%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµùÕ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream
// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_ARM64 #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/codegen/assembler.h" #include "src/codegen/callable.h" #include "src/codegen/code-factory.h" #include "src/codegen/external-reference-table.h" #include "src/codegen/interface-descriptors-inl.h" #include "src/codegen/macro-assembler-inl.h" #include "src/codegen/register-configuration.h" #include "src/codegen/reloc-info.h" #include "src/debug/debug.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/frame-constants.h" #include "src/execution/frames-inl.h" #include "src/heap/memory-chunk.h" #include "src/init/bootstrapper.h" #include "src/logging/counters.h" #include "src/runtime/runtime.h" #include "src/snapshot/snapshot.h" #if V8_ENABLE_WEBASSEMBLY #include "src/wasm/wasm-code-manager.h" #endif // V8_ENABLE_WEBASSEMBLY // Satisfy cpplint check, but don't include platform-specific header. It is // included recursively via macro-assembler.h. #if 0 #include "src/base/platform/wrappers.h" #include "src/codegen/arm64/macro-assembler-arm64.h" #endif namespace v8 { namespace internal { CPURegList TurboAssembler::DefaultTmpList() { return CPURegList(ip0, ip1); } CPURegList TurboAssembler::DefaultFPTmpList() { return CPURegList(fp_scratch1, fp_scratch2); } namespace { // For WebAssembly we care about the full floating point register. If we are not // running Wasm, we can get away with saving half of those registers. #if V8_ENABLE_WEBASSEMBLY constexpr int kStackSavedSavedFPSizeInBits = kQRegSizeInBits; #else constexpr int kStackSavedSavedFPSizeInBits = kDRegSizeInBits; #endif // V8_ENABLE_WEBASSEMBLY } // namespace int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion) const { auto list = kCallerSaved; list.Remove(exclusion); list.Align(); int bytes = list.TotalSizeInBytes(); if (fp_mode == SaveFPRegsMode::kSave) { auto fp_list = CPURegList::GetCallerSavedV(kStackSavedSavedFPSizeInBits); DCHECK_EQ(fp_list.Count() % 2, 0); bytes += fp_list.TotalSizeInBytes(); } return bytes; } int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion) { ASM_CODE_COMMENT(this); auto list = kCallerSaved; list.Remove(exclusion); list.Align(); PushCPURegList<kDontStoreLR>(list); int bytes = list.TotalSizeInBytes(); if (fp_mode == SaveFPRegsMode::kSave) { auto fp_list = CPURegList::GetCallerSavedV(kStackSavedSavedFPSizeInBits); DCHECK_EQ(fp_list.Count() % 2, 0); PushCPURegList(fp_list); bytes += fp_list.TotalSizeInBytes(); } return bytes; } int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion) { ASM_CODE_COMMENT(this); int bytes = 0; if (fp_mode == SaveFPRegsMode::kSave) { auto fp_list = CPURegList::GetCallerSavedV(kStackSavedSavedFPSizeInBits); DCHECK_EQ(fp_list.Count() % 2, 0); PopCPURegList(fp_list); bytes += fp_list.TotalSizeInBytes(); } auto list = kCallerSaved; list.Remove(exclusion); list.Align(); PopCPURegList<kDontLoadLR>(list); bytes += list.TotalSizeInBytes(); return bytes; } void TurboAssembler::LogicalMacro(const Register& rd, const Register& rn, const Operand& operand, LogicalOp op) { ASM_CODE_COMMENT(this); UseScratchRegisterScope temps(this); if (operand.NeedsRelocation(this)) { Register temp = temps.AcquireX(); Ldr(temp, operand.immediate()); Logical(rd, rn, temp, op); } else if (operand.IsImmediate()) { int64_t immediate = operand.ImmediateValue(); unsigned reg_size = rd.SizeInBits(); // If the operation is NOT, invert the operation and immediate. if ((op & NOT) == NOT) { op = static_cast<LogicalOp>(op & ~NOT); immediate = ~immediate; } // Ignore the top 32 bits of an immediate if we're moving to a W register. if (rd.Is32Bits()) { // Check that the top 32 bits are consistent. DCHECK(((immediate >> kWRegSizeInBits) == 0) || ((immediate >> kWRegSizeInBits) == -1)); immediate &= kWRegMask; } DCHECK(rd.Is64Bits() || is_uint32(immediate)); // Special cases for all set or all clear immediates. if (immediate == 0) { switch (op) { case AND: Mov(rd, 0); return; case ORR: // Fall through. case EOR: Mov(rd, rn); return; case ANDS: // Fall through. case BICS: break; default: UNREACHABLE(); } } else if ((rd.Is64Bits() && (immediate == -1L)) || (rd.Is32Bits() && (immediate == 0xFFFFFFFFL))) { switch (op) { case AND: Mov(rd, rn); return; case ORR: Mov(rd, immediate); return; case EOR: Mvn(rd, rn); return; case ANDS: // Fall through. case BICS: break; default: UNREACHABLE(); } } unsigned n, imm_s, imm_r; if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) { // Immediate can be encoded in the instruction. LogicalImmediate(rd, rn, n, imm_s, imm_r, op); } else { // Immediate can't be encoded: synthesize using move immediate. Register temp = temps.AcquireSameSizeAs(rn); // If the left-hand input is the stack pointer, we can't pre-shift the // immediate, as the encoding won't allow the subsequent post shift. PreShiftImmMode mode = rn == sp ? kNoShift : kAnyShift; Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate, mode); if (rd.IsSP()) { // If rd is the stack pointer we cannot use it as the destination // register so we use the temp register as an intermediate again. Logical(temp, rn, imm_operand, op); Mov(sp, temp); } else { Logical(rd, rn, imm_operand, op); } } } else if (operand.IsExtendedRegister()) { DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits()); // Add/sub extended supports shift <= 4. We want to support exactly the // same modes here. DCHECK_LE(operand.shift_amount(), 4); DCHECK(operand.reg().Is64Bits() || ((operand.extend() != UXTX) && (operand.extend() != SXTX))); Register temp = temps.AcquireSameSizeAs(rn); EmitExtendShift(temp, operand.reg(), operand.extend(), operand.shift_amount()); Logical(rd, rn, temp, op); } else { // The operand can be encoded in the instruction. DCHECK(operand.IsShiftedRegister()); Logical(rd, rn, operand, op); } } void TurboAssembler::Mov(const Register& rd, uint64_t imm) { DCHECK(allow_macro_instructions()); DCHECK(is_uint32(imm) || is_int32(imm) || rd.Is64Bits()); DCHECK(!rd.IsZero()); // TODO(all) extend to support more immediates. // // Immediates on Aarch64 can be produced using an initial value, and zero to // three move keep operations. // // Initial values can be generated with: // 1. 64-bit move zero (movz). // 2. 32-bit move inverted (movn). // 3. 64-bit move inverted. // 4. 32-bit orr immediate. // 5. 64-bit orr immediate. // Move-keep may then be used to modify each of the 16-bit half-words. // // The code below supports all five initial value generators, and // applying move-keep operations to move-zero and move-inverted initial // values. // Try to move the immediate in one instruction, and if that fails, switch to // using multiple instructions. if (!TryOneInstrMoveImmediate(rd, imm)) { unsigned reg_size = rd.SizeInBits(); // Generic immediate case. Imm will be represented by // [imm3, imm2, imm1, imm0], where each imm is 16 bits. // A move-zero or move-inverted is generated for the first non-zero or // non-0xFFFF immX, and a move-keep for subsequent non-zero immX. uint64_t ignored_halfword = 0; bool invert_move = false; // If the number of 0xFFFF halfwords is greater than the number of 0x0000 // halfwords, it's more efficient to use move-inverted. if (CountClearHalfWords(~imm, reg_size) > CountClearHalfWords(imm, reg_size)) { ignored_halfword = 0xFFFFL; invert_move = true; } // Mov instructions can't move immediate values into the stack pointer, so // set up a temporary register, if needed. UseScratchRegisterScope temps(this); Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd; // Iterate through the halfwords. Use movn/movz for the first non-ignored // halfword, and movk for subsequent halfwords. DCHECK_EQ(reg_size % 16, 0); bool first_mov_done = false; for (int i = 0; i < (rd.SizeInBits() / 16); i++) { uint64_t imm16 = (imm >> (16 * i)) & 0xFFFFL; if (imm16 != ignored_halfword) { if (!first_mov_done) { if (invert_move) { movn(temp, (~imm16) & 0xFFFFL, 16 * i); } else { movz(temp, imm16, 16 * i); } first_mov_done = true; } else { // Construct a wider constant. movk(temp, imm16, 16 * i); } } } DCHECK(first_mov_done); // Move the temporary if the original destination register was the stack // pointer. if (rd.IsSP()) { mov(rd, temp); } } } void TurboAssembler::Mov(const Register& rd, const Operand& operand, DiscardMoveMode discard_mode) { DCHECK(allow_macro_instructions()); DCHECK(!rd.IsZero()); // Provide a swap register for instructions that need to write into the // system stack pointer (and can't do this inherently). UseScratchRegisterScope temps(this); Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd; if (operand.NeedsRelocation(this)) { // TODO(jgruber,v8:8887): Also consider a root-relative load when generating // non-isolate-independent code. In many cases it might be cheaper than // embedding the relocatable value. if (root_array_available_ && options().isolate_independent_code) { if (operand.ImmediateRMode() == RelocInfo::EXTERNAL_REFERENCE) { Address addr = static_cast<Address>(operand.ImmediateValue()); ExternalReference reference = bit_cast<ExternalReference>(addr); IndirectLoadExternalReference(rd, reference); return; } else if (RelocInfo::IsEmbeddedObjectMode(operand.ImmediateRMode())) { Handle<HeapObject> x( reinterpret_cast<Address*>(operand.ImmediateValue())); // TODO(v8:9706): Fix-it! This load will always uncompress the value // even when we are loading a compressed embedded object. IndirectLoadConstant(rd.X(), x); return; } } Ldr(dst, operand); } else if (operand.IsImmediate()) { // Call the macro assembler for generic immediates. Mov(dst, operand.ImmediateValue()); } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) { // Emit a shift instruction if moving a shifted register. This operation // could also be achieved using an orr instruction (like orn used by Mvn), // but using a shift instruction makes the disassembly clearer. EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount()); } else if (operand.IsExtendedRegister()) { // Emit an extend instruction if moving an extended register. This handles // extend with post-shift operations, too. EmitExtendShift(dst, operand.reg(), operand.extend(), operand.shift_amount()); } else { // Otherwise, emit a register move only if the registers are distinct, or // if they are not X registers. // // Note that mov(w0, w0) is not a no-op because it clears the top word of // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W // registers is not required to clear the top word of the X register. In // this case, the instruction is discarded. // // If sp is an operand, add #0 is emitted, otherwise, orr #0. if (rd != operand.reg() || (rd.Is32Bits() && (discard_mode == kDontDiscardForSameWReg))) { Assembler::mov(rd, operand.reg()); } // This case can handle writes into the system stack pointer directly. dst = rd; } // Copy the result to the system stack pointer. if (dst != rd) { DCHECK(rd.IsSP()); Assembler::mov(rd, dst); } } void TurboAssembler::Mov(const Register& rd, Smi smi) { return Mov(rd, Operand(smi)); } void TurboAssembler::Movi16bitHelper(const VRegister& vd, uint64_t imm) { DCHECK(is_uint16(imm)); int byte1 = (imm & 0xFF); int byte2 = ((imm >> 8) & 0xFF); if (byte1 == byte2) { movi(vd.Is64Bits() ? vd.V8B() : vd.V16B(), byte1); } else if (byte1 == 0) { movi(vd, byte2, LSL, 8); } else if (byte2 == 0) { movi(vd, byte1); } else if (byte1 == 0xFF) { mvni(vd, ~byte2 & 0xFF, LSL, 8); } else if (byte2 == 0xFF) { mvni(vd, ~byte1 & 0xFF); } else { UseScratchRegisterScope temps(this); Register temp = temps.AcquireW(); movz(temp, imm); dup(vd, temp); } } void TurboAssembler::Movi32bitHelper(const VRegister& vd, uint64_t imm) { DCHECK(is_uint32(imm)); uint8_t bytes[sizeof(imm)]; memcpy(bytes, &imm, sizeof(imm)); // All bytes are either 0x00 or 0xFF. { bool all0orff = true; for (int i = 0; i < 4; ++i) { if ((bytes[i] != 0) && (bytes[i] != 0xFF)) { all0orff = false; break; } } if (all0orff == true) { movi(vd.Is64Bits() ? vd.V1D() : vd.V2D(), ((imm << 32) | imm)); return; } } // Of the 4 bytes, only one byte is non-zero. for (int i = 0; i < 4; i++) { if ((imm & (0xFF << (i * 8))) == imm) { movi(vd, bytes[i], LSL, i * 8); return; } } // Of the 4 bytes, only one byte is not 0xFF. for (int i = 0; i < 4; i++) { uint32_t mask = ~(0xFF << (i * 8)); if ((imm & mask) == mask) { mvni(vd, ~bytes[i] & 0xFF, LSL, i * 8); return; } } // Immediate is of the form 0x00MMFFFF. if ((imm & 0xFF00FFFF) == 0x0000FFFF) { movi(vd, bytes[2], MSL, 16); return; } // Immediate is of the form 0x0000MMFF. if ((imm & 0xFFFF00FF) == 0x000000FF) { movi(vd, bytes[1], MSL, 8); return; } // Immediate is of the form 0xFFMM0000. if ((imm & 0xFF00FFFF) == 0xFF000000) { mvni(vd, ~bytes[2] & 0xFF, MSL, 16); return; } // Immediate is of the form 0xFFFFMM00. if ((imm & 0xFFFF00FF) == 0xFFFF0000) { mvni(vd, ~bytes[1] & 0xFF, MSL, 8); return; } // Top and bottom 16-bits are equal. if (((imm >> 16) & 0xFFFF) == (imm & 0xFFFF)) { Movi16bitHelper(vd.Is64Bits() ? vd.V4H() : vd.V8H(), imm & 0xFFFF); return; } // Default case. { UseScratchRegisterScope temps(this); Register temp = temps.AcquireW(); Mov(temp, imm); dup(vd, temp); } } void TurboAssembler::Movi64bitHelper(const VRegister& vd, uint64_t imm) { // All bytes are either 0x00 or 0xFF. { bool all0orff = true; for (int i = 0; i < 8; ++i) { int byteval = (imm >> (i * 8)) & 0xFF; if (byteval != 0 && byteval != 0xFF) { all0orff = false; break; } } if (all0orff == true) { movi(vd, imm); return; } } // Top and bottom 32-bits are equal. if (((imm >> 32) & 0xFFFFFFFF) == (imm & 0xFFFFFFFF)) { Movi32bitHelper(vd.Is64Bits() ? vd.V2S() : vd.V4S(), imm & 0xFFFFFFFF); return; } // Default case. { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, imm); if (vd.Is1D()) { mov(vd.D(), 0, temp); } else { dup(vd.V2D(), temp); } } } void TurboAssembler::Movi(const VRegister& vd, uint64_t imm, Shift shift, int shift_amount) { DCHECK(allow_macro_instructions()); if (shift_amount != 0 || shift != LSL) { movi(vd, imm, shift, shift_amount); } else if (vd.Is8B() || vd.Is16B()) { // 8-bit immediate. DCHECK(is_uint8(imm)); movi(vd, imm); } else if (vd.Is4H() || vd.Is8H()) { // 16-bit immediate. Movi16bitHelper(vd, imm); } else if (vd.Is2S() || vd.Is4S()) { // 32-bit immediate. Movi32bitHelper(vd, imm); } else { // 64-bit immediate. Movi64bitHelper(vd, imm); } } void TurboAssembler::Movi(const VRegister& vd, uint64_t hi, uint64_t lo) { // TODO(v8:11033): Move 128-bit values in a more efficient way. DCHECK(vd.Is128Bits()); Movi(vd.V2D(), lo); if (lo != hi) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, hi); Ins(vd.V2D(), 1, temp); } } void TurboAssembler::Mvn(const Register& rd, const Operand& operand) { DCHECK(allow_macro_instructions()); if (operand.NeedsRelocation(this)) { Ldr(rd, operand.immediate()); mvn(rd, rd); } else if (operand.IsImmediate()) { // Call the macro assembler for generic immediates. Mov(rd, ~operand.ImmediateValue()); } else if (operand.IsExtendedRegister()) { // Emit two instructions for the extend case. This differs from Mov, as // the extend and invert can't be achieved in one instruction. EmitExtendShift(rd, operand.reg(), operand.extend(), operand.shift_amount()); mvn(rd, rd); } else { mvn(rd, operand); } } unsigned TurboAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) { DCHECK_EQ(reg_size % 8, 0); int count = 0; for (unsigned i = 0; i < (reg_size / 16); i++) { if ((imm & 0xFFFF) == 0) { count++; } imm >>= 16; } return count; } // The movz instruction can generate immediates containing an arbitrary 16-bit // half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000. bool TurboAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) { DCHECK((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits)); return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1); } // The movn instruction can generate immediates containing an arbitrary 16-bit // half-word, with remaining bits set, eg. 0xFFFF1234, 0xFFFF1234FFFFFFFF. bool TurboAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) { return IsImmMovz(~imm, reg_size); } void TurboAssembler::ConditionalCompareMacro(const Register& rn, const Operand& operand, StatusFlags nzcv, Condition cond, ConditionalCompareOp op) { DCHECK((cond != al) && (cond != nv)); if (operand.NeedsRelocation(this)) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, operand.immediate()); ConditionalCompareMacro(rn, temp, nzcv, cond, op); } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) || (operand.IsImmediate() && IsImmConditionalCompare(operand.ImmediateValue()))) { // The immediate can be encoded in the instruction, or the operand is an // unshifted register: call the assembler. ConditionalCompare(rn, operand, nzcv, cond, op); } else { // The operand isn't directly supported by the instruction: perform the // operation on a temporary register. UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(rn); Mov(temp, operand); ConditionalCompare(rn, temp, nzcv, cond, op); } } void TurboAssembler::Csel(const Register& rd, const Register& rn, const Operand& operand, Condition cond) { DCHECK(allow_macro_instructions()); DCHECK(!rd.IsZero()); DCHECK((cond != al) && (cond != nv)); if (operand.IsImmediate()) { // Immediate argument. Handle special cases of 0, 1 and -1 using zero // register. int64_t imm = operand.ImmediateValue(); Register zr = AppropriateZeroRegFor(rn); if (imm == 0) { csel(rd, rn, zr, cond); } else if (imm == 1) { csinc(rd, rn, zr, cond); } else if (imm == -1) { csinv(rd, rn, zr, cond); } else { UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(rn); Mov(temp, imm); csel(rd, rn, temp, cond); } } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) { // Unshifted register argument. csel(rd, rn, operand.reg(), cond); } else { // All other arguments. UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(rn); Mov(temp, operand); csel(rd, rn, temp, cond); } } bool TurboAssembler::TryOneInstrMoveImmediate(const Register& dst, int64_t imm) { unsigned n, imm_s, imm_r; int reg_size = dst.SizeInBits(); if (IsImmMovz(imm, reg_size) && !dst.IsSP()) { // Immediate can be represented in a move zero instruction. Movz can't write // to the stack pointer. movz(dst, imm); return true; } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) { // Immediate can be represented in a move not instruction. Movn can't write // to the stack pointer. movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask)); return true; } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) { // Immediate can be represented in a logical orr instruction. LogicalImmediate(dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR); return true; } return false; } Operand TurboAssembler::MoveImmediateForShiftedOp(const Register& dst, int64_t imm, PreShiftImmMode mode) { int reg_size = dst.SizeInBits(); // Encode the immediate in a single move instruction, if possible. if (TryOneInstrMoveImmediate(dst, imm)) { // The move was successful; nothing to do here. } else { // Pre-shift the immediate to the least-significant bits of the register. int shift_low; if (reg_size == 64) { shift_low = base::bits::CountTrailingZeros(imm); } else { DCHECK_EQ(reg_size, 32); shift_low = base::bits::CountTrailingZeros(static_cast<uint32_t>(imm)); } if (mode == kLimitShiftForSP) { // When applied to the stack pointer, the subsequent arithmetic operation // can use the extend form to shift left by a maximum of four bits. Right // shifts are not allowed, so we filter them out later before the new // immediate is tested. shift_low = std::min(shift_low, 4); } int64_t imm_low = imm >> shift_low; // Pre-shift the immediate to the most-significant bits of the register. We // insert set bits in the least-significant bits, as this creates a // different immediate that may be encodable using movn or orr-immediate. // If this new immediate is encodable, the set bits will be eliminated by // the post shift on the following instruction. int shift_high = CountLeadingZeros(imm, reg_size); int64_t imm_high = (imm << shift_high) | ((INT64_C(1) << shift_high) - 1); if ((mode != kNoShift) && TryOneInstrMoveImmediate(dst, imm_low)) { // The new immediate has been moved into the destination's low bits: // return a new leftward-shifting operand. return Operand(dst, LSL, shift_low); } else if ((mode == kAnyShift) && TryOneInstrMoveImmediate(dst, imm_high)) { // The new immediate has been moved into the destination's high bits: // return a new rightward-shifting operand. return Operand(dst, LSR, shift_high); } else { // Use the generic move operation to set up the immediate. Mov(dst, imm); } } return Operand(dst); } void TurboAssembler::AddSubMacro(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, AddSubOp op) { if (operand.IsZero() && rd == rn && rd.Is64Bits() && rn.Is64Bits() && !operand.NeedsRelocation(this) && (S == LeaveFlags)) { // The instruction would be a nop. Avoid generating useless code. return; } if (operand.NeedsRelocation(this)) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Ldr(temp, operand.immediate()); AddSubMacro(rd, rn, temp, S, op); } else if ((operand.IsImmediate() && !IsImmAddSub(operand.ImmediateValue())) || (rn.IsZero() && !operand.IsShiftedRegister()) || (operand.IsShiftedRegister() && (operand.shift() == ROR))) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(rn); if (operand.IsImmediate()) { PreShiftImmMode mode = kAnyShift; // If the destination or source register is the stack pointer, we can // only pre-shift the immediate right by values supported in the add/sub // extend encoding. if (rd == sp) { // If the destination is SP and flags will be set, we can't pre-shift // the immediate at all. mode = (S == SetFlags) ? kNoShift : kLimitShiftForSP; } else if (rn == sp) { mode = kLimitShiftForSP; } Operand imm_operand = MoveImmediateForShiftedOp(temp, operand.ImmediateValue(), mode); AddSub(rd, rn, imm_operand, S, op); } else { Mov(temp, operand); AddSub(rd, rn, temp, S, op); } } else { AddSub(rd, rn, operand, S, op); } } void TurboAssembler::AddSubWithCarryMacro(const Register& rd, const Register& rn, const Operand& operand, FlagsUpdate S, AddSubWithCarryOp op) { DCHECK(rd.SizeInBits() == rn.SizeInBits()); UseScratchRegisterScope temps(this); if (operand.NeedsRelocation(this)) { Register temp = temps.AcquireX(); Ldr(temp, operand.immediate()); AddSubWithCarryMacro(rd, rn, temp, S, op); } else if (operand.IsImmediate() || (operand.IsShiftedRegister() && (operand.shift() == ROR))) { // Add/sub with carry (immediate or ROR shifted register.) Register temp = temps.AcquireSameSizeAs(rn); Mov(temp, operand); AddSubWithCarry(rd, rn, temp, S, op); } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) { // Add/sub with carry (shifted register). DCHECK(operand.reg().SizeInBits() == rd.SizeInBits()); DCHECK(operand.shift() != ROR); DCHECK(is_uintn(operand.shift_amount(), rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2 : kWRegSizeInBitsLog2)); Register temp = temps.AcquireSameSizeAs(rn); EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount()); AddSubWithCarry(rd, rn, temp, S, op); } else if (operand.IsExtendedRegister()) { // Add/sub with carry (extended register). DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits()); // Add/sub extended supports a shift <= 4. We want to support exactly the // same modes. DCHECK_LE(operand.shift_amount(), 4); DCHECK(operand.reg().Is64Bits() || ((operand.extend() != UXTX) && (operand.extend() != SXTX))); Register temp = temps.AcquireSameSizeAs(rn); EmitExtendShift(temp, operand.reg(), operand.extend(), operand.shift_amount()); AddSubWithCarry(rd, rn, temp, S, op); } else { // The addressing mode is directly supported by the instruction. AddSubWithCarry(rd, rn, operand, S, op); } } void TurboAssembler::LoadStoreMacro(const CPURegister& rt, const MemOperand& addr, LoadStoreOp op) { int64_t offset = addr.offset(); unsigned size = CalcLSDataSize(op); // Check if an immediate offset fits in the immediate field of the // appropriate instruction. If not, emit two instructions to perform // the operation. if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) && !IsImmLSUnscaled(offset)) { // Immediate offset that can't be encoded using unsigned or unscaled // addressing modes. UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(addr.base()); Mov(temp, addr.offset()); LoadStore(rt, MemOperand(addr.base(), temp), op); } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) { // Post-index beyond unscaled addressing range. LoadStore(rt, MemOperand(addr.base()), op); add(addr.base(), addr.base(), offset); } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) { // Pre-index beyond unscaled addressing range. add(addr.base(), addr.base(), offset); LoadStore(rt, MemOperand(addr.base()), op); } else { // Encodable in one load/store instruction. LoadStore(rt, addr, op); } } void TurboAssembler::LoadStorePairMacro(const CPURegister& rt, const CPURegister& rt2, const MemOperand& addr, LoadStorePairOp op) { // TODO(all): Should we support register offset for load-store-pair? DCHECK(!addr.IsRegisterOffset()); int64_t offset = addr.offset(); unsigned size = CalcLSPairDataSize(op); // Check if the offset fits in the immediate field of the appropriate // instruction. If not, emit two instructions to perform the operation. if (IsImmLSPair(offset, size)) { // Encodable in one load/store pair instruction. LoadStorePair(rt, rt2, addr, op); } else { Register base = addr.base(); if (addr.IsImmediateOffset()) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(base); Add(temp, base, offset); LoadStorePair(rt, rt2, MemOperand(temp), op); } else if (addr.IsPostIndex()) { LoadStorePair(rt, rt2, MemOperand(base), op); Add(base, base, offset); } else { DCHECK(addr.IsPreIndex()); Add(base, base, offset); LoadStorePair(rt, rt2, MemOperand(base), op); } } } bool TurboAssembler::NeedExtraInstructionsOrRegisterBranch( Label* label, ImmBranchType b_type) { bool need_longer_range = false; // There are two situations in which we care about the offset being out of // range: // - The label is bound but too far away. // - The label is not bound but linked, and the previous branch // instruction in the chain is too far away. if (label->is_bound() || label->is_linked()) { need_longer_range = !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset()); } if (!need_longer_range && !label->is_bound()) { int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type); unresolved_branches_.insert(std::pair<int, FarBranchInfo>( max_reachable_pc, FarBranchInfo(pc_offset(), label))); // Also maintain the next pool check. next_veneer_pool_check_ = std::min( next_veneer_pool_check_, max_reachable_pc - kVeneerDistanceCheckMargin); } return need_longer_range; } void TurboAssembler::Adr(const Register& rd, Label* label, AdrHint hint) { DCHECK(allow_macro_instructions()); DCHECK(!rd.IsZero()); if (hint == kAdrNear) { adr(rd, label); return; } DCHECK_EQ(hint, kAdrFar); if (label->is_bound()) { int label_offset = label->pos() - pc_offset(); if (Instruction::IsValidPCRelOffset(label_offset)) { adr(rd, label); } else { DCHECK_LE(label_offset, 0); int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1)); adr(rd, min_adr_offset); Add(rd, rd, label_offset - min_adr_offset); } } else { UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); InstructionAccurateScope scope(this, PatchingAssembler::kAdrFarPatchableNInstrs); adr(rd, label); for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) { nop(ADR_FAR_NOP); } movz(scratch, 0); } } void TurboAssembler::B(Label* label, BranchType type, Register reg, int bit) { DCHECK((reg == NoReg || type >= kBranchTypeFirstUsingReg) && (bit == -1 || type >= kBranchTypeFirstUsingBit)); if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) { B(static_cast<Condition>(type), label); } else { switch (type) { case always: B(label); break; case never: break; case reg_zero: Cbz(reg, label); break; case reg_not_zero: Cbnz(reg, label); break; case reg_bit_clear: Tbz(reg, bit, label); break; case reg_bit_set: Tbnz(reg, bit, label); break; default: UNREACHABLE(); } } } void TurboAssembler::B(Label* label, Condition cond) { DCHECK(allow_macro_instructions()); DCHECK((cond != al) && (cond != nv)); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, CondBranchType); if (need_extra_instructions) { b(&done, NegateCondition(cond)); B(label); } else { b(label, cond); } bind(&done); } void TurboAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) { DCHECK(allow_macro_instructions()); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, TestBranchType); if (need_extra_instructions) { tbz(rt, bit_pos, &done); B(label); } else { tbnz(rt, bit_pos, label); } bind(&done); } void TurboAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) { DCHECK(allow_macro_instructions()); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, TestBranchType); if (need_extra_instructions) { tbnz(rt, bit_pos, &done); B(label); } else { tbz(rt, bit_pos, label); } bind(&done); } void TurboAssembler::Cbnz(const Register& rt, Label* label) { DCHECK(allow_macro_instructions()); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType); if (need_extra_instructions) { cbz(rt, &done); B(label); } else { cbnz(rt, label); } bind(&done); } void TurboAssembler::Cbz(const Register& rt, Label* label) { DCHECK(allow_macro_instructions()); Label done; bool need_extra_instructions = NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType); if (need_extra_instructions) { cbnz(rt, &done); B(label); } else { cbz(rt, label); } bind(&done); } // Pseudo-instructions. void TurboAssembler::Abs(const Register& rd, const Register& rm, Label* is_not_representable, Label* is_representable) { DCHECK(allow_macro_instructions()); DCHECK(AreSameSizeAndType(rd, rm)); Cmp(rm, 1); Cneg(rd, rm, lt); // If the comparison sets the v flag, the input was the smallest value // representable by rm, and the mathematical result of abs(rm) is not // representable using two's complement. if ((is_not_representable != nullptr) && (is_representable != nullptr)) { B(is_not_representable, vs); B(is_representable); } else if (is_not_representable != nullptr) { B(is_not_representable, vs); } else if (is_representable != nullptr) { B(is_representable, vc); } } // Abstracted stack operations. void TurboAssembler::Push(const CPURegister& src0, const CPURegister& src1, const CPURegister& src2, const CPURegister& src3, const CPURegister& src4, const CPURegister& src5, const CPURegister& src6, const CPURegister& src7) { DCHECK(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7)); int count = 5 + src5.is_valid() + src6.is_valid() + src6.is_valid(); int size = src0.SizeInBytes(); DCHECK_EQ(0, (size * count) % 16); PushHelper(4, size, src0, src1, src2, src3); PushHelper(count - 4, size, src4, src5, src6, src7); } void TurboAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1, const CPURegister& dst2, const CPURegister& dst3, const CPURegister& dst4, const CPURegister& dst5, const CPURegister& dst6, const CPURegister& dst7) { // It is not valid to pop into the same register more than once in one // instruction, not even into the zero register. DCHECK(!AreAliased(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7)); DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7)); DCHECK(dst0.is_valid()); int count = 5 + dst5.is_valid() + dst6.is_valid() + dst7.is_valid(); int size = dst0.SizeInBytes(); DCHECK_EQ(0, (size * count) % 16); PopHelper(4, size, dst0, dst1, dst2, dst3); PopHelper(count - 4, size, dst4, dst5, dst6, dst7); } void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireSameSizeAs(count); Label loop, leftover2, leftover1, done; Subs(temp, count, 4); B(mi, &leftover2); // Push groups of four first. Bind(&loop); Subs(temp, temp, 4); PushHelper(4, src.SizeInBytes(), src, src, src, src); B(pl, &loop); // Push groups of two. Bind(&leftover2); Tbz(count, 1, &leftover1); PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg); // Push the last one (if required). Bind(&leftover1); Tbz(count, 0, &done); PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg); Bind(&done); } void TurboAssembler::PushHelper(int count, int size, const CPURegister& src0, const CPURegister& src1, const CPURegister& src2, const CPURegister& src3) { // Ensure that we don't unintentially modify scratch or debug registers. InstructionAccurateScope scope(this); DCHECK(AreSameSizeAndType(src0, src1, src2, src3)); DCHECK(size == src0.SizeInBytes()); // When pushing multiple registers, the store order is chosen such that // Push(a, b) is equivalent to Push(a) followed by Push(b). switch (count) { case 1: DCHECK(src1.IsNone() && src2.IsNone() && src3.IsNone()); str(src0, MemOperand(sp, -1 * size, PreIndex)); break; case 2: DCHECK(src2.IsNone() && src3.IsNone()); stp(src1, src0, MemOperand(sp, -2 * size, PreIndex)); break; case 3: DCHECK(src3.IsNone()); stp(src2, src1, MemOperand(sp, -3 * size, PreIndex)); str(src0, MemOperand(sp, 2 * size)); break; case 4: // Skip over 4 * size, then fill in the gap. This allows four W registers // to be pushed using sp, whilst maintaining 16-byte alignment for sp // at all times. stp(src3, src2, MemOperand(sp, -4 * size, PreIndex)); stp(src1, src0, MemOperand(sp, 2 * size)); break; default: UNREACHABLE(); } } void TurboAssembler::PopHelper(int count, int size, const CPURegister& dst0, const CPURegister& dst1, const CPURegister& dst2, const CPURegister& dst3) { // Ensure that we don't unintentially modify scratch or debug registers. InstructionAccurateScope scope(this); DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3)); DCHECK(size == dst0.SizeInBytes()); // When popping multiple registers, the load order is chosen such that // Pop(a, b) is equivalent to Pop(a) followed by Pop(b). switch (count) { case 1: DCHECK(dst1.IsNone() && dst2.IsNone() && dst3.IsNone()); ldr(dst0, MemOperand(sp, 1 * size, PostIndex)); break; case 2: DCHECK(dst2.IsNone() && dst3.IsNone()); ldp(dst0, dst1, MemOperand(sp, 2 * size, PostIndex)); break; case 3: DCHECK(dst3.IsNone()); ldr(dst2, MemOperand(sp, 2 * size)); ldp(dst0, dst1, MemOperand(sp, 3 * size, PostIndex)); break; case 4: // Load the higher addresses first, then load the lower addresses and // skip the whole block in the second instruction. This allows four W // registers to be popped using sp, whilst maintaining 16-byte alignment // for sp at all times. ldp(dst2, dst3, MemOperand(sp, 2 * size)); ldp(dst0, dst1, MemOperand(sp, 4 * size, PostIndex)); break; default: UNREACHABLE(); } } void TurboAssembler::PokePair(const CPURegister& src1, const CPURegister& src2, int offset) { DCHECK(AreSameSizeAndType(src1, src2)); DCHECK((offset >= 0) && ((offset % src1.SizeInBytes()) == 0)); Stp(src1, src2, MemOperand(sp, offset)); } void MacroAssembler::PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset) { DCHECK(AreSameSizeAndType(dst1, dst2)); DCHECK((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0)); Ldp(dst1, dst2, MemOperand(sp, offset)); } void MacroAssembler::PushCalleeSavedRegisters() { ASM_CODE_COMMENT(this); // Ensure that the macro-assembler doesn't use any scratch registers. InstructionAccurateScope scope(this); MemOperand tos(sp, -2 * static_cast<int>(kXRegSize), PreIndex); stp(d14, d15, tos); stp(d12, d13, tos); stp(d10, d11, tos); stp(d8, d9, tos); stp(x27, x28, tos); stp(x25, x26, tos); stp(x23, x24, tos); stp(x21, x22, tos); stp(x19, x20, tos); STATIC_ASSERT( EntryFrameConstants::kCalleeSavedRegisterBytesPushedBeforeFpLrPair == 18 * kSystemPointerSize); #ifdef V8_ENABLE_CONTROL_FLOW_INTEGRITY // Use the stack pointer's value immediately before pushing the LR as the // context for signing it. This is what the StackFrameIterator expects. pacibsp(); #endif stp(x29, x30, tos); // fp, lr STATIC_ASSERT( EntryFrameConstants::kCalleeSavedRegisterBytesPushedAfterFpLrPair == 0); } void MacroAssembler::PopCalleeSavedRegisters() { ASM_CODE_COMMENT(this); // Ensure that the macro-assembler doesn't use any scratch registers. InstructionAccurateScope scope(this); MemOperand tos(sp, 2 * kXRegSize, PostIndex); ldp(x29, x30, tos); // fp, lr #ifdef V8_ENABLE_CONTROL_FLOW_INTEGRITY // The context (stack pointer value) for authenticating // the LR here must // match the one used for signing it (see `PushCalleeSavedRegisters`). autibsp(); #endif ldp(x19, x20, tos); ldp(x21, x22, tos); ldp(x23, x24, tos); ldp(x25, x26, tos); ldp(x27, x28, tos); ldp(d8, d9, tos); ldp(d10, d11, tos); ldp(d12, d13, tos); ldp(d14, d15, tos); } void TurboAssembler::AssertSpAligned() { if (!FLAG_debug_code) return; ASM_CODE_COMMENT(this); HardAbortScope hard_abort(this); // Avoid calls to Abort. // Arm64 requires the stack pointer to be 16-byte aligned prior to address // calculation. UseScratchRegisterScope scope(this); Register temp = scope.AcquireX(); Mov(temp, sp); Tst(temp, 15); Check(eq, AbortReason::kUnexpectedStackPointer); } void TurboAssembler::CopySlots(int dst, Register src, Register slot_count) { DCHECK(!src.IsZero()); UseScratchRegisterScope scope(this); Register dst_reg = scope.AcquireX(); SlotAddress(dst_reg, dst); SlotAddress(src, src); CopyDoubleWords(dst_reg, src, slot_count); } void TurboAssembler::CopySlots(Register dst, Register src, Register slot_count) { DCHECK(!dst.IsZero() && !src.IsZero()); SlotAddress(dst, dst); SlotAddress(src, src); CopyDoubleWords(dst, src, slot_count); } void TurboAssembler::CopyDoubleWords(Register dst, Register src, Register count, CopyDoubleWordsMode mode) { ASM_CODE_COMMENT(this); DCHECK(!AreAliased(dst, src, count)); if (FLAG_debug_code) { Register pointer1 = dst; Register pointer2 = src; if (mode == kSrcLessThanDst) { pointer1 = src; pointer2 = dst; } // Copy requires pointer1 < pointer2 || (pointer1 - pointer2) >= count. Label pointer1_below_pointer2; Subs(pointer1, pointer1, pointer2); B(lt, &pointer1_below_pointer2); Cmp(pointer1, count); Check(ge, AbortReason::kOffsetOutOfRange); Bind(&pointer1_below_pointer2); Add(pointer1, pointer1, pointer2); } static_assert(kSystemPointerSize == kDRegSize, "pointers must be the same size as doubles"); if (mode == kDstLessThanSrcAndReverse) { Add(src, src, Operand(count, LSL, kSystemPointerSizeLog2)); Sub(src, src, kSystemPointerSize); } int src_direction = (mode == kDstLessThanSrc) ? 1 : -1; int dst_direction = (mode == kSrcLessThanDst) ? -1 : 1; UseScratchRegisterScope scope(this); VRegister temp0 = scope.AcquireD(); VRegister temp1 = scope.AcquireD(); Label pairs, loop, done; Tbz(count, 0, &pairs); Ldr(temp0, MemOperand(src, src_direction * kSystemPointerSize, PostIndex)); Sub(count, count, 1); Str(temp0, MemOperand(dst, dst_direction * kSystemPointerSize, PostIndex)); Bind(&pairs); if (mode == kSrcLessThanDst) { // Adjust pointers for post-index ldp/stp with negative offset: Sub(dst, dst, kSystemPointerSize); Sub(src, src, kSystemPointerSize); } else if (mode == kDstLessThanSrcAndReverse) { Sub(src, src, kSystemPointerSize); } Bind(&loop); Cbz(count, &done); Ldp(temp0, temp1, MemOperand(src, 2 * src_direction * kSystemPointerSize, PostIndex)); Sub(count, count, 2); if (mode == kDstLessThanSrcAndReverse) { Stp(temp1, temp0, MemOperand(dst, 2 * dst_direction * kSystemPointerSize, PostIndex)); } else { Stp(temp0, temp1, MemOperand(dst, 2 * dst_direction * kSystemPointerSize, PostIndex)); } B(&loop); // TODO(all): large copies may benefit from using temporary Q registers // to copy four double words per iteration. Bind(&done); } void TurboAssembler::SlotAddress(Register dst, int slot_offset) { Add(dst, sp, slot_offset << kSystemPointerSizeLog2); } void TurboAssembler::SlotAddress(Register dst, Register slot_offset) { Add(dst, sp, Operand(slot_offset, LSL, kSystemPointerSizeLog2)); } void TurboAssembler::AssertFPCRState(Register fpcr) { if (!FLAG_debug_code) return; ASM_CODE_COMMENT(this); Label unexpected_mode, done; UseScratchRegisterScope temps(this); if (fpcr.IsNone()) { fpcr = temps.AcquireX(); Mrs(fpcr, FPCR); } // Settings left to their default values: // - Assert that flush-to-zero is not set. Tbnz(fpcr, FZ_offset, &unexpected_mode); // - Assert that the rounding mode is nearest-with-ties-to-even. STATIC_ASSERT(FPTieEven == 0); Tst(fpcr, RMode_mask); B(eq, &done); Bind(&unexpected_mode); Abort(AbortReason::kUnexpectedFPCRMode); Bind(&done); } void TurboAssembler::CanonicalizeNaN(const VRegister& dst, const VRegister& src) { AssertFPCRState(); // Subtracting 0.0 preserves all inputs except for signalling NaNs, which // become quiet NaNs. We use fsub rather than fadd because fsub preserves -0.0 // inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0. Fsub(dst, src, fp_zero); } void TurboAssembler::LoadRoot(Register destination, RootIndex index) { ASM_CODE_COMMENT(this); // TODO(jbramley): Most root values are constants, and can be synthesized // without a load. Refer to the ARM back end for details. Ldr(destination, MemOperand(kRootRegister, RootRegisterOffsetForRootIndex(index))); } void TurboAssembler::PushRoot(RootIndex index) { ASM_CODE_COMMENT(this); UseScratchRegisterScope temps(this); Register tmp = temps.AcquireX(); LoadRoot(tmp, index); Push(tmp); } void TurboAssembler::Move(Register dst, Smi src) { Mov(dst, src); } void TurboAssembler::Move(Register dst, MemOperand src) { Ldr(dst, src); } void TurboAssembler::Move(Register dst, Register src) { if (dst == src) return; Mov(dst, src); } void TurboAssembler::MovePair(Register dst0, Register src0, Register dst1, Register src1) { DCHECK_NE(dst0, dst1); if (dst0 != src1) { Mov(dst0, src0); Mov(dst1, src1); } else if (dst1 != src0) { // Swap the order of the moves to resolve the overlap. Mov(dst1, src1); Mov(dst0, src0); } else { // Worse case scenario, this is a swap. Swap(dst0, src0); } } void TurboAssembler::Swap(Register lhs, Register rhs) { DCHECK(lhs.IsSameSizeAndType(rhs)); DCHECK_NE(lhs, rhs); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, rhs); Mov(rhs, lhs); Mov(lhs, temp); } void TurboAssembler::Swap(VRegister lhs, VRegister rhs) { DCHECK(lhs.IsSameSizeAndType(rhs)); DCHECK_NE(lhs, rhs); UseScratchRegisterScope temps(this); VRegister temp = VRegister::no_reg(); if (lhs.IsS()) { temp = temps.AcquireS(); } else if (lhs.IsD()) { temp = temps.AcquireD(); } else { DCHECK(lhs.IsQ()); temp = temps.AcquireQ(); } Mov(temp, rhs); Mov(rhs, lhs); Mov(lhs, temp); } void TurboAssembler::AssertSmi(Register object, AbortReason reason) { if (!FLAG_debug_code) return; ASM_CODE_COMMENT(this); STATIC_ASSERT(kSmiTag == 0); Tst(object, kSmiTagMask); Check(eq, reason); } void MacroAssembler::AssertNotSmi(Register object, AbortReason reason) { if (!FLAG_debug_code) return; ASM_CODE_COMMENT(this); STATIC_ASSERT(kSmiTag == 0); Tst(object, kSmiTagMask); Check(ne, reason); } void MacroAssembler::AssertCodeT(Register object) { if (!FLAG_debug_code) return; ASM_CODE_COMMENT(this); AssertNotSmi(object, AbortReason::kOperandIsNotACodeT); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); CompareObjectType( object, temp, temp, V8_EXTERNAL_CODE_SPACE_BOOL ? CODE_DATA_CONTAINER_TYPE : CODE_TYPE); Check(eq, AbortReason::kOperandIsNotACodeT); } void MacroAssembler::AssertConstructor(Register object) { if (!FLAG_debug_code) return; ASM_CODE_COMMENT(this); AssertNotSmi(object, AbortReason::kOperandIsASmiAndNotAConstructor); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); LoadMap(temp, object); Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); Tst(temp, Operand(Map::Bits1::IsConstructorBit::kMask)); Check(ne, AbortReason::kOperandIsNotAConstructor); } void MacroAssembler::AssertFunction(Register object) { if (!FLAG_debug_code) return; ASM_CODE_COMMENT(this); AssertNotSmi(object, AbortReason::kOperandIsASmiAndNotAFunction); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); LoadMap(temp, object); CompareInstanceTypeRange(temp, temp, FIRST_JS_FUNCTION_TYPE, LAST_JS_FUNCTION_TYPE); Check(ls, AbortReason::kOperandIsNotAFunction); } void MacroAssembler::AssertBoundFunction(Register object) { if (!FLAG_debug_code) return; ASM_CODE_COMMENT(this); AssertNotSmi(object, AbortReason::kOperandIsASmiAndNotABoundFunction); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); CompareObjectType(object, temp, temp, JS_BOUND_FUNCTION_TYPE); Check(eq, AbortReason::kOperandIsNotABoundFunction); } void MacroAssembler::AssertGeneratorObject(Register object) { if (!FLAG_debug_code) return; ASM_CODE_COMMENT(this); AssertNotSmi(object, AbortReason::kOperandIsASmiAndNotAGeneratorObject); // Load map UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); LoadMap(temp, object); Label do_check; // Load instance type and check if JSGeneratorObject CompareInstanceType(temp, temp, JS_GENERATOR_OBJECT_TYPE); B(eq, &do_check); // Check if JSAsyncFunctionObject Cmp(temp, JS_ASYNC_FUNCTION_OBJECT_TYPE); B(eq, &do_check); // Check if JSAsyncGeneratorObject Cmp(temp, JS_ASYNC_GENERATOR_OBJECT_TYPE); bind(&do_check); // Restore generator object to register and perform assertion Check(eq, AbortReason::kOperandIsNotAGeneratorObject); } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) { if (!FLAG_debug_code) return; ASM_CODE_COMMENT(this); UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); Label done_checking; AssertNotSmi(object); JumpIfRoot(object, RootIndex::kUndefinedValue, &done_checking); LoadMap(scratch, object); CompareInstanceType(scratch, scratch, ALLOCATION_SITE_TYPE); Assert(eq, AbortReason::kExpectedUndefinedOrCell); Bind(&done_checking); } void TurboAssembler::AssertPositiveOrZero(Register value) { if (!FLAG_debug_code) return; ASM_CODE_COMMENT(this); Label done; int sign_bit = value.Is64Bits() ? kXSignBit : kWSignBit; Tbz(value, sign_bit, &done); Abort(AbortReason::kUnexpectedNegativeValue); Bind(&done); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { ASM_CODE_COMMENT(this); // All arguments must be on the stack before this function is called. // x0 holds the return value after the call. // Check that the number of arguments matches what the function expects. // If f->nargs is -1, the function can accept a variable number of arguments. CHECK(f->nargs < 0 || f->nargs == num_arguments); // Place the necessary arguments. Mov(x0, num_arguments); Mov(x1, ExternalReference::Create(f)); Handle<Code> code = CodeFactory::CEntry(isolate(), f->result_size, save_doubles); Call(code, RelocInfo::CODE_TARGET); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, bool builtin_exit_frame) { ASM_CODE_COMMENT(this); Mov(x1, builtin); Handle<Code> code = CodeFactory::CEntry(isolate(), 1, SaveFPRegsMode::kIgnore, ArgvMode::kStack, builtin_exit_frame); Jump(code, RelocInfo::CODE_TARGET); } void MacroAssembler::JumpToInstructionStream(Address entry) { Ldr(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); Br(kOffHeapTrampolineRegister); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { ASM_CODE_COMMENT(this); const Runtime::Function* function = Runtime::FunctionForId(fid); DCHECK_EQ(1, function->result_size); if (function->nargs >= 0) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Mov(x0, function->nargs); } JumpToExternalReference(ExternalReference::Create(fid)); } int TurboAssembler::ActivationFrameAlignment() { #if V8_HOST_ARCH_ARM64 // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one ARM // platform for another ARM platform with a different alignment. return base::OS::ActivationFrameAlignment(); #else // V8_HOST_ARCH_ARM64 // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif // V8_HOST_ARCH_ARM64 } void TurboAssembler::CallCFunction(ExternalReference function, int num_of_reg_args) { CallCFunction(function, num_of_reg_args, 0); } void TurboAssembler::CallCFunction(ExternalReference function, int num_of_reg_args, int num_of_double_args) { ASM_CODE_COMMENT(this); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, function); CallCFunction(temp, num_of_reg_args, num_of_double_args); } static const int kRegisterPassedArguments = 8; void TurboAssembler::CallCFunction(Register function, int num_of_reg_args, int num_of_double_args) { ASM_CODE_COMMENT(this); DCHECK_LE(num_of_reg_args + num_of_double_args, kMaxCParameters); DCHECK(has_frame()); // If we're passing doubles, we're limited to the following prototypes // (defined by ExternalReference::Type): // BUILTIN_COMPARE_CALL: int f(double, double) // BUILTIN_FP_FP_CALL: double f(double, double) // BUILTIN_FP_CALL: double f(double) // BUILTIN_FP_INT_CALL: double f(double, int) if (num_of_double_args > 0) { DCHECK_LE(num_of_reg_args, 1); DCHECK_LE(num_of_double_args + num_of_reg_args, 2); } // Save the frame pointer and PC so that the stack layout remains iterable, // even without an ExitFrame which normally exists between JS and C frames. Register pc_scratch = x4; Register addr_scratch = x5; Push(pc_scratch, addr_scratch); Label get_pc; Bind(&get_pc); Adr(pc_scratch, &get_pc); // See x64 code for reasoning about how to address the isolate data fields. if (root_array_available()) { Str(pc_scratch, MemOperand(kRootRegister, IsolateData::fast_c_call_caller_pc_offset())); Str(fp, MemOperand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset())); } else { DCHECK_NOT_NULL(isolate()); Mov(addr_scratch, ExternalReference::fast_c_call_caller_pc_address(isolate())); Str(pc_scratch, MemOperand(addr_scratch)); Mov(addr_scratch, ExternalReference::fast_c_call_caller_fp_address(isolate())); Str(fp, MemOperand(addr_scratch)); } Pop(addr_scratch, pc_scratch); // Call directly. The function called cannot cause a GC, or allow preemption, // so the return address in the link register stays correct. Call(function); // We don't unset the PC; the FP is the source of truth. if (root_array_available()) { Str(xzr, MemOperand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset())); } else { DCHECK_NOT_NULL(isolate()); Push(addr_scratch, xzr); Mov(addr_scratch, ExternalReference::fast_c_call_caller_fp_address(isolate())); Str(xzr, MemOperand(addr_scratch)); Pop(xzr, addr_scratch); } if (num_of_reg_args > kRegisterPassedArguments) { // Drop the register passed arguments. int claim_slots = RoundUp(num_of_reg_args - kRegisterPassedArguments, 2); Drop(claim_slots); } } void TurboAssembler::LoadFromConstantsTable(Register destination, int constant_index) { ASM_CODE_COMMENT(this); DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable)); LoadRoot(destination, RootIndex::kBuiltinsConstantsTable); LoadTaggedPointerField( destination, FieldMemOperand(destination, FixedArray::OffsetOfElementAt( constant_index))); } void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { Ldr(destination, MemOperand(kRootRegister, offset)); } void TurboAssembler::LoadRootRegisterOffset(Register destination, intptr_t offset) { if (offset == 0) { Mov(destination, kRootRegister); } else { Add(destination, kRootRegister, offset); } } void TurboAssembler::Jump(Register target, Condition cond) { if (cond == nv) return; Label done; if (cond != al) B(NegateCondition(cond), &done); Br(target); Bind(&done); } void TurboAssembler::JumpHelper(int64_t offset, RelocInfo::Mode rmode, Condition cond) { if (cond == nv) return; Label done; if (cond != al) B(NegateCondition(cond), &done); if (CanUseNearCallOrJump(rmode)) { DCHECK(IsNearCallOffset(offset)); near_jump(static_cast<int>(offset), rmode); } else { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); uint64_t imm = reinterpret_cast<uint64_t>(pc_) + offset * kInstrSize; Mov(temp, Immediate(imm, rmode)); Br(temp); } Bind(&done); } // The calculated offset is either: // * the 'target' input unmodified if this is a Wasm call, or // * the offset of the target from the code range start, if this is a call to // un-embedded builtin, or // * the offset of the target from the current PC, in instructions, for any // other type of call. int64_t TurboAssembler::CalculateTargetOffset(Address target, RelocInfo::Mode rmode, byte* pc) { int64_t offset = static_cast<int64_t>(target); if (rmode == RelocInfo::WASM_CALL || rmode == RelocInfo::WASM_STUB_CALL) { // The target of WebAssembly calls is still an index instead of an actual // address at this point, and needs to be encoded as-is. return offset; } if (RelocInfo::IsRuntimeEntry(rmode)) { // The runtime entry targets are used for generating short builtin calls // from JIT-compiled code (it's not used during snapshot creation). // The value is encoded as an offset from the code range (see // Assembler::runtime_entry_at()). // Note, that builtin-to-builitin calls use different OFF_HEAP_TARGET mode // and therefore are encoded differently. DCHECK_NE(options().code_range_start, 0); offset -= static_cast<int64_t>(options().code_range_start); } else { offset -= reinterpret_cast<int64_t>(pc); } DCHECK_EQ(offset % kInstrSize, 0); offset = offset / static_cast<int>(kInstrSize); return offset; } void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond) { int64_t offset = CalculateTargetOffset(target, rmode, pc_); if (RelocInfo::IsRuntimeEntry(rmode) && IsOnHeap()) { saved_offsets_for_runtime_entries_.push_back( std::make_pair(pc_offset(), offset)); offset = CalculateTargetOffset(target, RelocInfo::NONE, pc_); } JumpHelper(offset, rmode, cond); } void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond) { DCHECK(RelocInfo::IsCodeTarget(rmode)); DCHECK_IMPLIES(options().isolate_independent_code, Builtins::IsIsolateIndependentBuiltin(*code)); if (options().inline_offheap_trampolines) { Builtin builtin = Builtin::kNoBuiltinId; if (isolate()->builtins()->IsBuiltinHandle(code, &builtin)) { // Inline the trampoline. CHECK_EQ(cond, Condition::al); // Implement if necessary. TailCallBuiltin(builtin); return; } } if (CanUseNearCallOrJump(rmode)) { EmbeddedObjectIndex index = AddEmbeddedObject(code); DCHECK(is_int32(index)); JumpHelper(static_cast<int64_t>(index), rmode, cond); } else { Jump(code.address(), rmode, cond); } } void TurboAssembler::Jump(const ExternalReference& reference) { UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); Mov(scratch, reference); Jump(scratch); } void TurboAssembler::Call(Register target) { BlockPoolsScope scope(this); Blr(target); } void TurboAssembler::Call(Address target, RelocInfo::Mode rmode) { BlockPoolsScope scope(this); if (CanUseNearCallOrJump(rmode)) { int64_t offset = CalculateTargetOffset(target, rmode, pc_); if (IsOnHeap() && RelocInfo::IsRuntimeEntry(rmode)) { saved_offsets_for_runtime_entries_.push_back( std::make_pair(pc_offset(), offset)); offset = CalculateTargetOffset(target, RelocInfo::NONE, pc_); } DCHECK(IsNearCallOffset(offset)); near_call(static_cast<int>(offset), rmode); } else { IndirectCall(target, rmode); } } void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode) { DCHECK_IMPLIES(options().isolate_independent_code, Builtins::IsIsolateIndependentBuiltin(*code)); BlockPoolsScope scope(this); if (options().inline_offheap_trampolines) { Builtin builtin = Builtin::kNoBuiltinId; if (isolate()->builtins()->IsBuiltinHandle(code, &builtin)) { // Inline the trampoline. CallBuiltin(builtin); return; } } DCHECK(code->IsExecutable()); if (CanUseNearCallOrJump(rmode)) { EmbeddedObjectIndex index = AddEmbeddedObject(code); DCHECK(is_int32(index)); near_call(static_cast<int32_t>(index), rmode); } else { IndirectCall(code.address(), rmode); } } void TurboAssembler::Call(ExternalReference target) { UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, target); Call(temp); } void TurboAssembler::LoadEntryFromBuiltinIndex(Register builtin_index) { ASM_CODE_COMMENT(this); // The builtin_index register contains the builtin index as a Smi. // Untagging is folded into the indexing operand below. if (SmiValuesAre32Bits()) { Asr(builtin_index, builtin_index, kSmiShift - kSystemPointerSizeLog2); Add(builtin_index, builtin_index, IsolateData::builtin_entry_table_offset()); Ldr(builtin_index, MemOperand(kRootRegister, builtin_index)); } else { DCHECK(SmiValuesAre31Bits()); if (COMPRESS_POINTERS_BOOL) { Add(builtin_index, kRootRegister, Operand(builtin_index.W(), SXTW, kSystemPointerSizeLog2 - kSmiShift)); } else { Add(builtin_index, kRootRegister, Operand(builtin_index, LSL, kSystemPointerSizeLog2 - kSmiShift)); } Ldr(builtin_index, MemOperand(builtin_index, IsolateData::builtin_entry_table_offset())); } } void TurboAssembler::LoadEntryFromBuiltin(Builtin builtin, Register destination) { Ldr(destination, EntryFromBuiltinAsOperand(builtin)); } MemOperand TurboAssembler::EntryFromBuiltinAsOperand(Builtin builtin) { ASM_CODE_COMMENT(this); DCHECK(root_array_available()); return MemOperand(kRootRegister, IsolateData::builtin_entry_slot_offset(builtin)); } void TurboAssembler::CallBuiltinByIndex(Register builtin_index) { ASM_CODE_COMMENT(this); LoadEntryFromBuiltinIndex(builtin_index); Call(builtin_index); } void TurboAssembler::CallBuiltin(Builtin builtin) { ASM_CODE_COMMENT(this); DCHECK(Builtins::IsBuiltinId(builtin)); RecordCommentForOffHeapTrampoline(builtin); CHECK_NE(builtin, Builtin::kNoBuiltinId); if (options().short_builtin_calls) { Call(BuiltinEntry(builtin), RelocInfo::RUNTIME_ENTRY); } else { UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); Ldr(scratch, Operand(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET)); Call(scratch); } } void TurboAssembler::TailCallBuiltin(Builtin builtin) { ASM_CODE_COMMENT(this); DCHECK(Builtins::IsBuiltinId(builtin)); RecordCommentForOffHeapTrampoline(builtin); CHECK_NE(builtin, Builtin::kNoBuiltinId); if (options().short_builtin_calls) { Jump(BuiltinEntry(builtin), RelocInfo::RUNTIME_ENTRY); } else { // The control flow integrity (CFI) feature allows us to "sign" code entry // points as a target for calls, jumps or both. Arm64 has special // instructions for this purpose, so-called "landing pads" (see // TurboAssembler::CallTarget(), TurboAssembler::JumpTarget() and // TurboAssembler::JumpOrCallTarget()). Currently, we generate "Call" // landing pads for CPP builtins. In order to allow tail calling to those // builtins we have to use a workaround. // x17 is used to allow using "Call" (i.e. `bti c`) rather than "Jump" // (i.e. `bti j`) landing pads for the tail-called code. Register temp = x17; Ldr(temp, Operand(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET)); Jump(temp); } } void TurboAssembler::LoadCodeObjectEntry(Register destination, Register code_object) { ASM_CODE_COMMENT(this); // Code objects are called differently depending on whether we are generating // builtin code (which will later be embedded into the binary) or compiling // user JS code at runtime. // * Builtin code runs in --jitless mode and thus must not call into on-heap // Code targets. Instead, we dispatch through the builtins entry table. // * Codegen at runtime does not have this restriction and we can use the // shorter, branchless instruction sequence. The assumption here is that // targets are usually generated code and not builtin Code objects. if (options().isolate_independent_code) { DCHECK(root_array_available()); Label if_code_is_off_heap, out; UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); DCHECK(!AreAliased(destination, scratch)); DCHECK(!AreAliased(code_object, scratch)); // Check whether the Code object is an off-heap trampoline. If so, call its // (off-heap) entry point directly without going through the (on-heap) // trampoline. Otherwise, just call the Code object as always. Ldrsw(scratch, FieldMemOperand(code_object, Code::kFlagsOffset)); Tst(scratch, Operand(Code::IsOffHeapTrampoline::kMask)); B(ne, &if_code_is_off_heap); // Not an off-heap trampoline object, the entry point is at // Code::raw_instruction_start(). Add(destination, code_object, Code::kHeaderSize - kHeapObjectTag); B(&out); // An off-heap trampoline, the entry point is loaded from the builtin entry // table. bind(&if_code_is_off_heap); Ldrsw(scratch, FieldMemOperand(code_object, Code::kBuiltinIndexOffset)); Lsl(destination, scratch, kSystemPointerSizeLog2); Add(destination, destination, kRootRegister); Ldr(destination, MemOperand(destination, IsolateData::builtin_entry_table_offset())); bind(&out); } else { Add(destination, code_object, Code::kHeaderSize - kHeapObjectTag); } } void TurboAssembler::CallCodeObject(Register code_object) { ASM_CODE_COMMENT(this); LoadCodeObjectEntry(code_object, code_object); Call(code_object); } void TurboAssembler::JumpCodeObject(Register code_object, JumpMode jump_mode) { ASM_CODE_COMMENT(this); DCHECK_EQ(JumpMode::kJump, jump_mode); LoadCodeObjectEntry(code_object, code_object); UseScratchRegisterScope temps(this); if (code_object != x17) { temps.Exclude(x17); Mov(x17, code_object); } Jump(x17); } void TurboAssembler::LoadCodeDataContainerEntry( Register destination, Register code_data_container_object) { ASM_CODE_COMMENT(this); CHECK(V8_EXTERNAL_CODE_SPACE_BOOL); Ldr(destination, FieldMemOperand(code_data_container_object, CodeDataContainer::kCodeEntryPointOffset)); } void TurboAssembler::LoadCodeDataContainerCodeNonBuiltin( Register destination, Register code_data_container_object) { ASM_CODE_COMMENT(this); LoadTaggedPointerField(destination, FieldMemOperand(code_data_container_object, CodeDataContainer::kCodeOffset)); } void TurboAssembler::CallCodeDataContainerObject( Register code_data_container_object) { ASM_CODE_COMMENT(this); LoadCodeDataContainerEntry(code_data_container_object, code_data_container_object); Call(code_data_container_object); } void TurboAssembler::JumpCodeDataContainerObject( Register code_data_container_object, JumpMode jump_mode) { ASM_CODE_COMMENT(this); DCHECK_EQ(JumpMode::kJump, jump_mode); LoadCodeDataContainerEntry(code_data_container_object, code_data_container_object); UseScratchRegisterScope temps(this); if (code_data_container_object != x17) { temps.Exclude(x17); Mov(x17, code_data_container_object); } Jump(x17); } void TurboAssembler::LoadCodeTEntry(Register destination, Register code) { ASM_CODE_COMMENT(this); if (V8_EXTERNAL_CODE_SPACE_BOOL) { LoadCodeDataContainerEntry(destination, code); } else { Add(destination, code, Operand(Code::kHeaderSize - kHeapObjectTag)); } } void TurboAssembler::CallCodeTObject(Register code) { if (V8_EXTERNAL_CODE_SPACE_BOOL) { CallCodeDataContainerObject(code); } else { CallCodeObject(code); } } void TurboAssembler::JumpCodeTObject(Register code, JumpMode jump_mode) { if (V8_EXTERNAL_CODE_SPACE_BOOL) { JumpCodeDataContainerObject(code, jump_mode); } else { JumpCodeObject(code, jump_mode); } } void TurboAssembler::StoreReturnAddressAndCall(Register target) { ASM_CODE_COMMENT(this); // This generates the final instruction sequence for calls to C functions // once an exit frame has been constructed. // // Note that this assumes the caller code (i.e. the Code object currently // being generated) is immovable or that the callee function cannot trigger // GC, since the callee function will return to it. UseScratchRegisterScope temps(this); temps.Exclude(x16, x17); Label return_location; Adr(x17, &return_location); #ifdef V8_ENABLE_CONTROL_FLOW_INTEGRITY Add(x16, sp, kSystemPointerSize); Pacib1716(); #endif Poke(x17, 0); if (FLAG_debug_code) { ASM_CODE_COMMENT_STRING(this, "Verify fp[kSPOffset]-8"); // Verify that the slot below fp[kSPOffset]-8 points to the signed return // location. Ldr(x16, MemOperand(fp, ExitFrameConstants::kSPOffset)); Ldr(x16, MemOperand(x16, -static_cast<int64_t>(kXRegSize))); Cmp(x16, x17); Check(eq, AbortReason::kReturnAddressNotFoundInFrame); } Blr(target); Bind(&return_location); } void TurboAssembler::IndirectCall(Address target, RelocInfo::Mode rmode) { ASM_CODE_COMMENT(this); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); Mov(temp, Immediate(target, rmode)); Blr(temp); } bool TurboAssembler::IsNearCallOffset(int64_t offset) { return is_int26(offset); } void TurboAssembler::CallForDeoptimization( Builtin target, int deopt_id, Label* exit, DeoptimizeKind kind, Label* ret, Label* jump_deoptimization_entry_label) { ASM_CODE_COMMENT(this); BlockPoolsScope scope(this); bl(jump_deoptimization_entry_label); DCHECK_EQ(SizeOfCodeGeneratedSince(exit), (kind == DeoptimizeKind::kLazy) ? Deoptimizer::kLazyDeoptExitSize : Deoptimizer::kNonLazyDeoptExitSize); if (kind == DeoptimizeKind::kEagerWithResume) { b(ret); DCHECK_EQ(SizeOfCodeGeneratedSince(exit), Deoptimizer::kEagerWithResumeBeforeArgsSize); } } void MacroAssembler::LoadStackLimit(Register destination, StackLimitKind kind) { ASM_CODE_COMMENT(this); DCHECK(root_array_available()); Isolate* isolate = this->isolate(); ExternalReference limit = kind == StackLimitKind::kRealStackLimit ? ExternalReference::address_of_real_jslimit(isolate) : ExternalReference::address_of_jslimit(isolate); DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit)); intptr_t offset = TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit); Ldr(destination, MemOperand(kRootRegister, offset)); } void MacroAssembler::StackOverflowCheck(Register num_args, Label* stack_overflow) { ASM_CODE_COMMENT(this); UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); // Check the stack for overflow. // We are not trying to catch interruptions (e.g. debug break and // preemption) here, so the "real stack limit" is checked. LoadStackLimit(scratch, StackLimitKind::kRealStackLimit); // Make scratch the space we have left. The stack might already be overflowed // here which will cause scratch to become negative. Sub(scratch, sp, scratch); // Check if the arguments will overflow the stack. Cmp(scratch, Operand(num_args, LSL, kSystemPointerSizeLog2)); B(le, stack_overflow); } void MacroAssembler::InvokePrologue(Register formal_parameter_count, Register actual_argument_count, Label* done, InvokeType type) { ASM_CODE_COMMENT(this); // x0: actual arguments count. // x1: function (passed through to callee). // x2: expected arguments count. // x3: new target Label regular_invoke; DCHECK_EQ(actual_argument_count, x0); DCHECK_EQ(formal_parameter_count, x2); // If the formal parameter count is equal to the adaptor sentinel, no need // to push undefined value as arguments. Cmp(formal_parameter_count, Operand(kDontAdaptArgumentsSentinel)); B(eq, ®ular_invoke); // If overapplication or if the actual argument count is equal to the // formal parameter count, no need to push extra undefined values. Register extra_argument_count = x2; Subs(extra_argument_count, formal_parameter_count, actual_argument_count); B(le, ®ular_invoke); // The stack pointer in arm64 needs to be 16-byte aligned. We might need to // (1) add an extra padding or (2) remove (re-use) the extra padding already // in the stack. Let {slots_to_copy} be the number of slots (arguments) to // move up in the stack and let {slots_to_claim} be the number of extra stack // slots to claim. Label even_extra_count, skip_move; Register slots_to_copy = x4; Register slots_to_claim = x5; Add(slots_to_copy, actual_argument_count, 1); // Copy with receiver. Mov(slots_to_claim, extra_argument_count); Tbz(extra_argument_count, 0, &even_extra_count); // Calculate {slots_to_claim} when {extra_argument_count} is odd. // If {actual_argument_count} is even, we need one extra padding slot // {slots_to_claim = extra_argument_count + 1}. // If {actual_argument_count} is odd, we know that the // original arguments will have a padding slot that we can reuse // {slots_to_claim = extra_argument_count - 1}. { Register scratch = x11; Add(slots_to_claim, extra_argument_count, 1); And(scratch, actual_argument_count, 1); Eor(scratch, scratch, 1); Sub(slots_to_claim, slots_to_claim, Operand(scratch, LSL, 1)); } Bind(&even_extra_count); Cbz(slots_to_claim, &skip_move); Label stack_overflow; StackOverflowCheck(slots_to_claim, &stack_overflow); Claim(slots_to_claim); // Move the arguments already in the stack including the receiver. { Register src = x6; Register dst = x7; SlotAddress(src, slots_to_claim); SlotAddress(dst, 0); CopyDoubleWords(dst, src, slots_to_copy); } Bind(&skip_move); Register actual_argument_with_receiver = x4; Register pointer_next_value = x5; Add(actual_argument_with_receiver, actual_argument_count, 1); // {slots_to_copy} was scratched. // Copy extra arguments as undefined values. { Label loop; Register undefined_value = x6; Register count = x7; LoadRoot(undefined_value, RootIndex::kUndefinedValue); SlotAddress(pointer_next_value, actual_argument_with_receiver); Mov(count, extra_argument_count); Bind(&loop); Str(undefined_value, MemOperand(pointer_next_value, kSystemPointerSize, PostIndex)); Subs(count, count, 1); Cbnz(count, &loop); } // Set padding if needed. { Label skip; Register total_args_slots = x4; Add(total_args_slots, actual_argument_with_receiver, extra_argument_count); Tbz(total_args_slots, 0, &skip); Str(padreg, MemOperand(pointer_next_value)); Bind(&skip); } B(®ular_invoke); bind(&stack_overflow); { FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); CallRuntime(Runtime::kThrowStackOverflow); Unreachable(); } Bind(®ular_invoke); } void MacroAssembler::CallDebugOnFunctionCall(Register fun, Register new_target, Register expected_parameter_count, Register actual_parameter_count) { ASM_CODE_COMMENT(this); // Load receiver to pass it later to DebugOnFunctionCall hook. Peek(x4, ReceiverOperand(actual_parameter_count)); FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); if (!new_target.is_valid()) new_target = padreg; // Save values on stack. SmiTag(expected_parameter_count); SmiTag(actual_parameter_count); Push(expected_parameter_count, actual_parameter_count, new_target, fun); Push(fun, x4); CallRuntime(Runtime::kDebugOnFunctionCall); // Restore values from stack. Pop(fun, new_target, actual_parameter_count, expected_parameter_count); SmiUntag(actual_parameter_count); SmiUntag(expected_parameter_count); } void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, Register expected_parameter_count, Register actual_parameter_count, InvokeType type) { ASM_CODE_COMMENT(this); // You can't call a function without a valid frame. DCHECK_IMPLIES(type == InvokeType::kCall, has_frame()); DCHECK_EQ(function, x1); DCHECK_IMPLIES(new_target.is_valid(), new_target == x3); // On function call, call into the debugger if necessary. Label debug_hook, continue_after_hook; { Mov(x4, ExternalReference::debug_hook_on_function_call_address(isolate())); Ldrsb(x4, MemOperand(x4)); Cbnz(x4, &debug_hook); } bind(&continue_after_hook); // Clear the new.target register if not given. if (!new_target.is_valid()) { LoadRoot(x3, RootIndex::kUndefinedValue); } Label done; InvokePrologue(expected_parameter_count, actual_parameter_count, &done, type); // If actual != expected, InvokePrologue will have handled the call through // the argument adaptor mechanism. // The called function expects the call kind in x5. // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. Register code = kJavaScriptCallCodeStartRegister; LoadTaggedPointerField(code, FieldMemOperand(function, JSFunction::kCodeOffset)); switch (type) { case InvokeType::kCall: CallCodeTObject(code); break; case InvokeType::kJump: JumpCodeTObject(code); break; } B(&done); // Deferred debug hook. bind(&debug_hook); CallDebugOnFunctionCall(function, new_target, expected_parameter_count, actual_parameter_count); B(&continue_after_hook); // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. Bind(&done); } Operand MacroAssembler::ReceiverOperand(Register arg_count) { return Operand(0); } void MacroAssembler::InvokeFunctionWithNewTarget( Register function, Register new_target, Register actual_parameter_count, InvokeType type) { ASM_CODE_COMMENT(this); // You can't call a function without a valid frame. DCHECK(type == InvokeType::kJump || has_frame()); // Contract with called JS functions requires that function is passed in x1. // (See FullCodeGenerator::Generate().) DCHECK_EQ(function, x1); Register expected_parameter_count = x2; LoadTaggedPointerField(cp, FieldMemOperand(function, JSFunction::kContextOffset)); // The number of arguments is stored as an int32_t, and -1 is a marker // (kDontAdaptArgumentsSentinel), so we need sign // extension to correctly handle it. LoadTaggedPointerField( expected_parameter_count, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); Ldrh(expected_parameter_count, FieldMemOperand(expected_parameter_count, SharedFunctionInfo::kFormalParameterCountOffset)); InvokeFunctionCode(function, new_target, expected_parameter_count, actual_parameter_count, type); } void MacroAssembler::InvokeFunction(Register function, Register expected_parameter_count, Register actual_parameter_count, InvokeType type) { ASM_CODE_COMMENT(this); // You can't call a function without a valid frame. DCHECK(type == InvokeType::kJump || has_frame()); // Contract with called JS functions requires that function is passed in x1. // (See FullCodeGenerator::Generate().) DCHECK_EQ(function, x1); // Set up the context. LoadTaggedPointerField(cp, FieldMemOperand(function, JSFunction::kContextOffset)); InvokeFunctionCode(function, no_reg, expected_parameter_count, actual_parameter_count, type); } void TurboAssembler::TryConvertDoubleToInt64(Register result, DoubleRegister double_input, Label* done) { ASM_CODE_COMMENT(this); // Try to convert with an FPU convert instruction. It's trivial to compute // the modulo operation on an integer register so we convert to a 64-bit // integer. // // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7FF...FF) // when the double is out of range. NaNs and infinities will be converted to 0 // (as ECMA-262 requires). Fcvtzs(result.X(), double_input); // The values INT64_MIN (0x800...00) or INT64_MAX (0x7FF...FF) are not // representable using a double, so if the result is one of those then we know // that saturation occurred, and we need to manually handle the conversion. // // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting // 1 will cause signed overflow. Cmp(result.X(), 1); Ccmp(result.X(), -1, VFlag, vc); B(vc, done); } void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result, DoubleRegister double_input, StubCallMode stub_mode, LinkRegisterStatus lr_status) { ASM_CODE_COMMENT(this); if (CpuFeatures::IsSupported(JSCVT)) { Fjcvtzs(result.W(), double_input); return; } Label done; // Try to convert the double to an int64. If successful, the bottom 32 bits // contain our truncated int32 result. TryConvertDoubleToInt64(result, double_input, &done); // If we fell through then inline version didn't succeed - call stub instead. if (lr_status == kLRHasNotBeenSaved) { Push<TurboAssembler::kSignLR>(lr, double_input); } else { Push<TurboAssembler::kDontStoreLR>(xzr, double_input); } // DoubleToI preserves any registers it needs to clobber. #if V8_ENABLE_WEBASSEMBLY if (stub_mode == StubCallMode::kCallWasmRuntimeStub) { Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL); #else // For balance. if (false) { #endif // V8_ENABLE_WEBASSEMBLY } else if (options().inline_offheap_trampolines) { CallBuiltin(Builtin::kDoubleToI); } else { Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET); } Ldr(result, MemOperand(sp, 0)); DCHECK_EQ(xzr.SizeInBytes(), double_input.SizeInBytes()); if (lr_status == kLRHasNotBeenSaved) { // Pop into xzr here to drop the double input on the stack: Pop<TurboAssembler::kAuthLR>(xzr, lr); } else { Drop(2); } Bind(&done); // Keep our invariant that the upper 32 bits are zero. Uxtw(result.W(), result.W()); } void TurboAssembler::Prologue() { ASM_CODE_COMMENT(this); Push<TurboAssembler::kSignLR>(lr, fp); mov(fp, sp); STATIC_ASSERT(kExtraSlotClaimedByPrologue == 1); Push(cp, kJSFunctionRegister, kJavaScriptCallArgCountRegister, padreg); } void TurboAssembler::EnterFrame(StackFrame::Type type) { UseScratchRegisterScope temps(this); if (type == StackFrame::INTERNAL #if V8_ENABLE_WEBASSEMBLY || type == StackFrame::WASM_DEBUG_BREAK #endif // V8_ENABLE_WEBASSEMBLY ) { Register type_reg = temps.AcquireX(); Mov(type_reg, StackFrame::TypeToMarker(type)); Push<TurboAssembler::kSignLR>(lr, fp, type_reg, padreg); const int kFrameSize = TypedFrameConstants::kFixedFrameSizeFromFp + kSystemPointerSize; Add(fp, sp, kFrameSize); // sp[3] : lr // sp[2] : fp // sp[1] : type // sp[0] : for alignment #if V8_ENABLE_WEBASSEMBLY } else if (type == StackFrame::WASM || type == StackFrame::WASM_COMPILE_LAZY || type == StackFrame::WASM_EXIT) { Register type_reg = temps.AcquireX(); Mov(type_reg, StackFrame::TypeToMarker(type)); Push<TurboAssembler::kSignLR>(lr, fp); Mov(fp, sp); Push(type_reg, kWasmInstanceRegister); // sp[3] : lr // sp[2] : fp // sp[1] : type // sp[0] : wasm instance #endif // V8_ENABLE_WEBASSEMBLY } else if (type == StackFrame::CONSTRUCT) { Register type_reg = temps.AcquireX(); Mov(type_reg, StackFrame::TypeToMarker(type)); // Users of this frame type push a context pointer after the type field, // so do it here to keep the stack pointer aligned. Push<TurboAssembler::kSignLR>(lr, fp, type_reg, cp); // The context pointer isn't part of the fixed frame, so add an extra slot // to account for it. Add(fp, sp, TypedFrameConstants::kFixedFrameSizeFromFp + kSystemPointerSize); // sp[3] : lr // sp[2] : fp // sp[1] : type // sp[0] : cp } else { DCHECK(StackFrame::IsJavaScript(type)); // Just push a minimal "machine frame", saving the frame pointer and return // address, without any markers. Push<TurboAssembler::kSignLR>(lr, fp); Mov(fp, sp); // sp[1] : lr // sp[0] : fp } } void TurboAssembler::LeaveFrame(StackFrame::Type type) { ASM_CODE_COMMENT(this); // Drop the execution stack down to the frame pointer and restore // the caller frame pointer and return address. Mov(sp, fp); Pop<TurboAssembler::kAuthLR>(fp, lr); } void MacroAssembler::ExitFramePreserveFPRegs() { ASM_CODE_COMMENT(this); DCHECK_EQ(kCallerSavedV.Count() % 2, 0); PushCPURegList(kCallerSavedV); } void MacroAssembler::ExitFrameRestoreFPRegs() { // Read the registers from the stack without popping them. The stack pointer // will be reset as part of the unwinding process. ASM_CODE_COMMENT(this); CPURegList saved_fp_regs = kCallerSavedV; DCHECK_EQ(saved_fp_regs.Count() % 2, 0); int offset = ExitFrameConstants::kLastExitFrameField; while (!saved_fp_regs.IsEmpty()) { const CPURegister& dst0 = saved_fp_regs.PopHighestIndex(); const CPURegister& dst1 = saved_fp_regs.PopHighestIndex(); offset -= 2 * kDRegSize; Ldp(dst1, dst0, MemOperand(fp, offset)); } } void MacroAssembler::EnterExitFrame(bool save_doubles, const Register& scratch, int extra_space, StackFrame::Type frame_type) { ASM_CODE_COMMENT(this); DCHECK(frame_type == StackFrame::EXIT || frame_type == StackFrame::BUILTIN_EXIT); // Set up the new stack frame. Push<TurboAssembler::kSignLR>(lr, fp); Mov(fp, sp); Mov(scratch, StackFrame::TypeToMarker(frame_type)); Push(scratch, xzr); // fp[8]: CallerPC (lr) // fp -> fp[0]: CallerFP (old fp) // fp[-8]: STUB marker // sp -> fp[-16]: Space reserved for SPOffset. STATIC_ASSERT((2 * kSystemPointerSize) == ExitFrameConstants::kCallerSPOffset); STATIC_ASSERT((1 * kSystemPointerSize) == ExitFrameConstants::kCallerPCOffset); STATIC_ASSERT((0 * kSystemPointerSize) == ExitFrameConstants::kCallerFPOffset); STATIC_ASSERT((-2 * kSystemPointerSize) == ExitFrameConstants::kSPOffset); // Save the frame pointer and context pointer in the top frame. Mov(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); Str(fp, MemOperand(scratch)); Mov(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); Str(cp, MemOperand(scratch)); STATIC_ASSERT((-2 * kSystemPointerSize) == ExitFrameConstants::kLastExitFrameField); if (save_doubles) { ExitFramePreserveFPRegs(); } // Round the number of space we need to claim to a multiple of two. int slots_to_claim = RoundUp(extra_space + 1, 2); // Reserve space for the return address and for user requested memory. // We do this before aligning to make sure that we end up correctly // aligned with the minimum of wasted space. Claim(slots_to_claim, kXRegSize); // fp[8]: CallerPC (lr) // fp -> fp[0]: CallerFP (old fp) // fp[-8]: STUB marker // fp[-16]: Space reserved for SPOffset. // fp[-16 - fp_size]: Saved doubles (if save_doubles is true). // sp[8]: Extra space reserved for caller (if extra_space != 0). // sp -> sp[0]: Space reserved for the return address. // ExitFrame::GetStateForFramePointer expects to find the return address at // the memory address immediately below the pointer stored in SPOffset. // It is not safe to derive much else from SPOffset, because the size of the // padding can vary. Add(scratch, sp, kXRegSize); Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); } // Leave the current exit frame. void MacroAssembler::LeaveExitFrame(bool restore_doubles, const Register& scratch, const Register& scratch2) { ASM_CODE_COMMENT(this); if (restore_doubles) { ExitFrameRestoreFPRegs(); } // Restore the context pointer from the top frame. Mov(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); Ldr(cp, MemOperand(scratch)); if (FLAG_debug_code) { // Also emit debug code to clear the cp in the top frame. Mov(scratch2, Operand(Context::kInvalidContext)); Mov(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); Str(scratch2, MemOperand(scratch)); } // Clear the frame pointer from the top frame. Mov(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); Str(xzr, MemOperand(scratch)); // Pop the exit frame. // fp[8]: CallerPC (lr) // fp -> fp[0]: CallerFP (old fp) // fp[...]: The rest of the frame. Mov(sp, fp); Pop<TurboAssembler::kAuthLR>(fp, lr); } void MacroAssembler::LoadGlobalProxy(Register dst) { ASM_CODE_COMMENT(this); LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX); } void MacroAssembler::LoadWeakValue(Register out, Register in, Label* target_if_cleared) { ASM_CODE_COMMENT(this); CompareAndBranch(in.W(), Operand(kClearedWeakHeapObjectLower32), eq, target_if_cleared); and_(out, in, Operand(~kWeakHeapObjectMask)); } void MacroAssembler::EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { ASM_CODE_COMMENT(this); DCHECK_NE(value, 0); if (FLAG_native_code_counters && counter->Enabled()) { // This operation has to be exactly 32-bit wide in case the external // reference table redirects the counter to a uint32_t dummy_stats_counter_ // field. Mov(scratch2, ExternalReference::Create(counter)); Ldr(scratch1.W(), MemOperand(scratch2)); Add(scratch1.W(), scratch1.W(), value); Str(scratch1.W(), MemOperand(scratch2)); } } void MacroAssembler::JumpIfObjectType(Register object, Register map, Register type_reg, InstanceType type, Label* if_cond_pass, Condition cond) { ASM_CODE_COMMENT(this); CompareObjectType(object, map, type_reg, type); B(cond, if_cond_pass); } // Sets condition flags based on comparison, and returns type in type_reg. void MacroAssembler::CompareObjectType(Register object, Register map, Register type_reg, InstanceType type) { ASM_CODE_COMMENT(this); LoadMap(map, object); CompareInstanceType(map, type_reg, type); } void TurboAssembler::LoadMap(Register dst, Register object) { ASM_CODE_COMMENT(this); LoadTaggedPointerField(dst, FieldMemOperand(object, HeapObject::kMapOffset)); } // Sets condition flags based on comparison, and returns type in type_reg. void MacroAssembler::CompareInstanceType(Register map, Register type_reg, InstanceType type) { ASM_CODE_COMMENT(this); Ldrh(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); Cmp(type_reg, type); } // Sets condition flags based on comparison, and returns type in type_reg. void MacroAssembler::CompareInstanceTypeRange(Register map, Register type_reg, InstanceType lower_limit, InstanceType higher_limit) { ASM_CODE_COMMENT(this); DCHECK_LT(lower_limit, higher_limit); UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); Ldrh(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); Sub(scratch, type_reg, Operand(lower_limit)); Cmp(scratch, Operand(higher_limit - lower_limit)); } void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) { ASM_CODE_COMMENT(this); // Load the map's "bit field 2". Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. DecodeField<Map::Bits2::ElementsKindBits>(result); } void MacroAssembler::CompareRoot(const Register& obj, RootIndex index) { ASM_CODE_COMMENT(this); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); DCHECK(!AreAliased(obj, temp)); LoadRoot(temp, index); CmpTagged(obj, temp); } void MacroAssembler::JumpIfRoot(const Register& obj, RootIndex index, Label* if_equal) { CompareRoot(obj, index); B(eq, if_equal); } void MacroAssembler::JumpIfNotRoot(const Register& obj, RootIndex index, Label* if_not_equal) { CompareRoot(obj, index); B(ne, if_not_equal); } void MacroAssembler::JumpIfIsInRange(const Register& value, unsigned lower_limit, unsigned higher_limit, Label* on_in_range) { ASM_CODE_COMMENT(this); if (lower_limit != 0) { UseScratchRegisterScope temps(this); Register scratch = temps.AcquireW(); Sub(scratch, value, Operand(lower_limit)); CompareAndBranch(scratch, Operand(higher_limit - lower_limit), ls, on_in_range); } else { CompareAndBranch(value, Operand(higher_limit - lower_limit), ls, on_in_range); } } void TurboAssembler::LoadTaggedPointerField(const Register& destination, const MemOperand& field_operand) { if (COMPRESS_POINTERS_BOOL) { DecompressTaggedPointer(destination, field_operand); } else { Ldr(destination, field_operand); } } void TurboAssembler::LoadAnyTaggedField(const Register& destination, const MemOperand& field_operand) { if (COMPRESS_POINTERS_BOOL) { DecompressAnyTagged(destination, field_operand); } else { Ldr(destination, field_operand); } } void TurboAssembler::LoadTaggedSignedField(const Register& destination, const MemOperand& field_operand) { if (COMPRESS_POINTERS_BOOL) { DecompressTaggedSigned(destination, field_operand); } else { Ldr(destination, field_operand); } } void TurboAssembler::SmiUntagField(Register dst, const MemOperand& src) { SmiUntag(dst, src); } void TurboAssembler::StoreTaggedField(const Register& value, const MemOperand& dst_field_operand) { if (COMPRESS_POINTERS_BOOL) { Str(value.W(), dst_field_operand); } else { Str(value, dst_field_operand); } } void TurboAssembler::DecompressTaggedSigned(const Register& destination, const MemOperand& field_operand) { ASM_CODE_COMMENT(this); Ldr(destination.W(), field_operand); if (FLAG_debug_code) { // Corrupt the top 32 bits. Made up of 16 fixed bits and 16 pc offset bits. Add(destination, destination, ((kDebugZapValue << 16) | (pc_offset() & 0xffff)) << 32); } } void TurboAssembler::DecompressTaggedPointer(const Register& destination, const MemOperand& field_operand) { ASM_CODE_COMMENT(this); Ldr(destination.W(), field_operand); Add(destination, kPtrComprCageBaseRegister, destination); } void TurboAssembler::DecompressTaggedPointer(const Register& destination, const Register& source) { ASM_CODE_COMMENT(this); Add(destination, kPtrComprCageBaseRegister, Operand(source, UXTW)); } void TurboAssembler::DecompressAnyTagged(const Register& destination, const MemOperand& field_operand) { ASM_CODE_COMMENT(this); Ldr(destination.W(), field_operand); Add(destination, kPtrComprCageBaseRegister, destination); } void TurboAssembler::CheckPageFlag(const Register& object, int mask, Condition cc, Label* condition_met) { ASM_CODE_COMMENT(this); UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); And(scratch, object, ~kPageAlignmentMask); Ldr(scratch, MemOperand(scratch, BasicMemoryChunk::kFlagsOffset)); if (cc == eq) { TestAndBranchIfAnySet(scratch, mask, condition_met); } else { DCHECK_EQ(cc, ne); TestAndBranchIfAllClear(scratch, mask, condition_met); } } void MacroAssembler::RecordWriteField(Register object, int offset, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check) { ASM_CODE_COMMENT(this); DCHECK(!AreAliased(object, value)); // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip the barrier if writing a smi. if (smi_check == SmiCheck::kInline) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so offset must be a multiple of kTaggedSize. DCHECK(IsAligned(offset, kTaggedSize)); if (FLAG_debug_code) { ASM_CODE_COMMENT_STRING(this, "Verify slot_address"); Label ok; UseScratchRegisterScope temps(this); Register scratch = temps.AcquireX(); DCHECK(!AreAliased(object, value, scratch)); Add(scratch, object, offset - kHeapObjectTag); Tst(scratch, kTaggedSize - 1); B(eq, &ok); Abort(AbortReason::kUnalignedCellInWriteBarrier); Bind(&ok); } RecordWrite(object, Operand(offset - kHeapObjectTag), value, lr_status, save_fp, remembered_set_action, SmiCheck::kOmit); Bind(&done); } void TurboAssembler::MaybeSaveRegisters(RegList registers) { if (registers == 0) return; ASM_CODE_COMMENT(this); CPURegList regs(CPURegister::kRegister, kXRegSizeInBits, registers); // If we were saving LR, we might need to sign it. DCHECK(!regs.IncludesAliasOf(lr)); regs.Align(); PushCPURegList(regs); } void TurboAssembler::MaybeRestoreRegisters(RegList registers) { if (registers == 0) return; ASM_CODE_COMMENT(this); CPURegList regs(CPURegister::kRegister, kXRegSizeInBits, registers); // If we were saving LR, we might need to sign it. DCHECK(!regs.IncludesAliasOf(lr)); regs.Align(); PopCPURegList(regs); } void TurboAssembler::CallEphemeronKeyBarrier(Register object, Operand offset, SaveFPRegsMode fp_mode) { ASM_CODE_COMMENT(this); RegList registers = WriteBarrierDescriptor::ComputeSavedRegisters(object); MaybeSaveRegisters(registers); MoveObjectAndSlot(WriteBarrierDescriptor::ObjectRegister(), WriteBarrierDescriptor::SlotAddressRegister(), object, offset); Call(isolate()->builtins()->code_handle( Builtins::GetEphemeronKeyBarrierStub(fp_mode)), RelocInfo::CODE_TARGET); MaybeRestoreRegisters(registers); } void TurboAssembler::CallRecordWriteStubSaveRegisters( Register object, Operand offset, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, StubCallMode mode) { ASM_CODE_COMMENT(this); RegList registers = WriteBarrierDescriptor::ComputeSavedRegisters(object); MaybeSaveRegisters(registers); Register object_parameter = WriteBarrierDescriptor::ObjectRegister(); Register slot_address_parameter = WriteBarrierDescriptor::SlotAddressRegister(); MoveObjectAndSlot(object_parameter, slot_address_parameter, object, offset); CallRecordWriteStub(object_parameter, slot_address_parameter, remembered_set_action, fp_mode, mode); MaybeRestoreRegisters(registers); } void TurboAssembler::CallRecordWriteStub( Register object, Register slot_address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, StubCallMode mode) { ASM_CODE_COMMENT(this); DCHECK_EQ(WriteBarrierDescriptor::ObjectRegister(), object); DCHECK_EQ(WriteBarrierDescriptor::SlotAddressRegister(), slot_address); #if V8_ENABLE_WEBASSEMBLY if (mode == StubCallMode::kCallWasmRuntimeStub) { auto wasm_target = wasm::WasmCode::GetRecordWriteStub(remembered_set_action, fp_mode); Call(wasm_target, RelocInfo::WASM_STUB_CALL); #else if (false) { #endif } else { Builtin builtin = Builtins::GetRecordWriteStub(remembered_set_action, fp_mode); if (options().inline_offheap_trampolines) { CallBuiltin(builtin); } else { Handle<Code> code_target = isolate()->builtins()->code_handle(builtin); Call(code_target, RelocInfo::CODE_TARGET); } } } void TurboAssembler::MoveObjectAndSlot(Register dst_object, Register dst_slot, Register object, Operand offset) { ASM_CODE_COMMENT(this); DCHECK_NE(dst_object, dst_slot); // If `offset` is a register, it cannot overlap with `object`. DCHECK_IMPLIES(!offset.IsImmediate(), offset.reg() != object); // If the slot register does not overlap with the object register, we can // overwrite it. if (dst_slot != object) { Add(dst_slot, object, offset); Mov(dst_object, object); return; } DCHECK_EQ(dst_slot, object); // If the destination object register does not overlap with the offset // register, we can overwrite it. if (offset.IsImmediate() || (offset.reg() != dst_object)) { Mov(dst_object, dst_slot); Add(dst_slot, dst_slot, offset); return; } DCHECK_EQ(dst_object, offset.reg()); // We only have `dst_slot` and `dst_object` left as distinct registers so we // have to swap them. We write this as a add+sub sequence to avoid using a // scratch register. Add(dst_slot, dst_slot, dst_object); Sub(dst_object, dst_slot, dst_object); } // If lr_status is kLRHasBeenSaved, lr will be clobbered. // // The register 'object' contains a heap object pointer. The heap object tag is // shifted away. void MacroAssembler::RecordWrite(Register object, Operand offset, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check) { ASM_CODE_COMMENT(this); ASM_LOCATION_IN_ASSEMBLER("MacroAssembler::RecordWrite"); DCHECK(!AreAliased(object, value)); if (FLAG_debug_code) { ASM_CODE_COMMENT_STRING(this, "Verify slot_address"); UseScratchRegisterScope temps(this); Register temp = temps.AcquireX(); DCHECK(!AreAliased(object, value, temp)); Add(temp, object, offset); LoadTaggedPointerField(temp, MemOperand(temp)); Cmp(temp, value); Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite); } if ((remembered_set_action == RememberedSetAction::kOmit && !FLAG_incremental_marking) || FLAG_disable_write_barriers) { return; } // First, check if a write barrier is even needed. The tests below // catch stores of smis and stores into the young generation. Label done; if (smi_check == SmiCheck::kInline) { DCHECK_EQ(0, kSmiTag); JumpIfSmi(value, &done); } CheckPageFlag(value, MemoryChunk::kPointersToHereAreInterestingMask, ne, &done); CheckPageFlag(object, MemoryChunk::kPointersFromHereAreInterestingMask, ne, &done); // Record the actual write. if (lr_status == kLRHasNotBeenSaved) { Push<TurboAssembler::kSignLR>(padreg, lr); } Register slot_address = WriteBarrierDescriptor::SlotAddressRegister(); DCHECK(!AreAliased(object, slot_address, value)); // TODO(cbruni): Turn offset into int. DCHECK(offset.IsImmediate()); Add(slot_address, object, offset); CallRecordWriteStub(object, slot_address, remembered_set_action, fp_mode); if (lr_status == kLRHasNotBeenSaved) { Pop<TurboAssembler::kAuthLR>(lr, padreg); } if (FLAG_debug_code) Mov(slot_address, Operand(kZapValue)); Bind(&done); } void TurboAssembler::Assert(Condition cond, AbortReason reason) { if (FLAG_debug_code) { Check(cond, reason); } } void TurboAssembler::AssertUnreachable(AbortReason reason) { if (FLAG_debug_code) Abort(reason); } void TurboAssembler::Check(Condition cond, AbortReason reason) { Label ok; B(cond, &ok); Abort(reason); // Will not return here. Bind(&ok); } void TurboAssembler::Trap() { Brk(0); } void TurboAssembler::DebugBreak() { Debug("DebugBreak", 0, BREAK); } void TurboAssembler::Abort(AbortReason reason) { ASM_CODE_COMMENT(this); if (FLAG_code_comments) { RecordComment("Abort message: "); RecordComment(GetAbortReason(reason)); } // Avoid emitting call to builtin if requested. if (trap_on_abort()) { Brk(0); return; } // We need some scratch registers for the MacroAssembler, so make sure we have // some. This is safe here because Abort never returns. RegList old_tmp_list = TmpList()->list(); TmpList()->Combine(MacroAssembler::DefaultTmpList()); if (should_abort_hard()) { // We don't care if we constructed a frame. Just pretend we did. FrameScope assume_frame(this, StackFrame::NONE); Mov(w0, static_cast<int>(reason)); Call(ExternalReference::abort_with_reason()); return; } // Avoid infinite recursion; Push contains some assertions that use Abort. HardAbortScope hard_aborts(this); Mov(x1, Smi::FromInt(static_cast<int>(reason))); if (!has_frame_) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } else { Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } TmpList()->set_list(old_tmp_list); } void MacroAssembler::LoadNativeContextSlot(Register dst, int index) { LoadMap(dst, cp); LoadTaggedPointerField( dst, FieldMemOperand( dst, Map::kConstructorOrBackPointerOrNativeContextOffset)); LoadTaggedPointerField(dst, MemOperand(dst, Context::SlotOffset(index))); } // This is the main Printf implementation. All other Printf variants call // PrintfNoPreserve after setting up one or more PreserveRegisterScopes. void TurboAssembler::PrintfNoPreserve(const char* format, const CPURegister& arg0, const CPURegister& arg1, const CPURegister& arg2, const CPURegister& arg3) { ASM_CODE_COMMENT(this); // We cannot handle a caller-saved stack pointer. It doesn't make much sense // in most cases anyway, so this restriction shouldn't be too serious. DCHECK(!kCallerSaved.IncludesAliasOf(sp)); // The provided arguments, and their proper procedure-call standard registers. CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3}; CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg}; int arg_count = kPrintfMaxArgCount; // The PCS varargs registers for printf. Note that x0 is used for the printf // format string. static const CPURegList kPCSVarargs = CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count); static const CPURegList kPCSVarargsFP = CPURegList(CPURegister::kVRegister, kDRegSizeInBits, 0, arg_count - 1); // We can use caller-saved registers as scratch values, except for the // arguments and the PCS registers where they might need to go. CPURegList tmp_list = kCallerSaved; tmp_list.Remove(x0); // Used to pass the format string. tmp_list.Remove(kPCSVarargs); tmp_list.Remove(arg0, arg1, arg2, arg3); CPURegList fp_tmp_list = kCallerSavedV; fp_tmp_list.Remove(kPCSVarargsFP); fp_tmp_list.Remove(arg0, arg1, arg2, arg3); // Override the TurboAssembler's scratch register list. The lists will be // reset automatically at the end of the UseScratchRegisterScope. UseScratchRegisterScope temps(this); TmpList()->set_list(tmp_list.list()); FPTmpList()->set_list(fp_tmp_list.list()); // Copies of the printf vararg registers that we can pop from. CPURegList pcs_varargs = kPCSVarargs; #ifndef V8_OS_WIN CPURegList pcs_varargs_fp = kPCSVarargsFP; #endif // Place the arguments. There are lots of clever tricks and optimizations we // could use here, but Printf is a debug tool so instead we just try to keep // it simple: Move each input that isn't already in the right place to a // scratch register, then move everything back. for (unsigned i = 0; i < kPrintfMaxArgCount; i++) { // Work out the proper PCS register for this argument. if (args[i].IsRegister()) { pcs[i] = pcs_varargs.PopLowestIndex().X(); // We might only need a W register here. We need to know the size of the // argument so we can properly encode it for the simulator call. if (args[i].Is32Bits()) pcs[i] = pcs[i].W(); } else if (args[i].IsVRegister()) { // In C, floats are always cast to doubles for varargs calls. #ifdef V8_OS_WIN // In case of variadic functions SIMD and Floating-point registers // aren't used. The general x0-x7 should be used instead. // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions pcs[i] = pcs_varargs.PopLowestIndex().X(); #else pcs[i] = pcs_varargs_fp.PopLowestIndex().D(); #endif } else { DCHECK(args[i].IsNone()); arg_count = i; break; } // If the argument is already in the right place, leave it where it is. if (args[i].Aliases(pcs[i])) continue; // Otherwise, if the argument is in a PCS argument register, allocate an // appropriate scratch register and then move it out of the way. if (kPCSVarargs.IncludesAliasOf(args[i]) || kPCSVarargsFP.IncludesAliasOf(args[i])) { if (args[i].IsRegister()) { Register old_arg = args[i].Reg(); Register new_arg = temps.AcquireSameSizeAs(old_arg); Mov(new_arg, old_arg); args[i] = new_arg; } else { VRegister old_arg = args[i].VReg(); VRegister new_arg = temps.AcquireSameSizeAs(old_arg); Fmov(new_arg, old_arg); args[i] = new_arg; } } } // Do a second pass to move values into their final positions and perform any // conversions that may be required. for (int i = 0; i < arg_count; i++) { #ifdef V8_OS_WIN if (args[i].IsVRegister()) { if (pcs[i].SizeInBytes() != args[i].SizeInBytes()) { // If the argument is half- or single-precision // converts to double-precision before that is // moved into the one of X scratch register. VRegister temp0 = temps.AcquireD(); Fcvt(temp0.VReg(), args[i].VReg()); Fmov(pcs[i].Reg(), temp0); } else { Fmov(pcs[i].Reg(), args[i].VReg()); } } else { Mov(pcs[i].Reg(), args[i].Reg(), kDiscardForSameWReg); } #else DCHECK(pcs[i].type() == args[i].type()); if (pcs[i].IsRegister()) { Mov(pcs[i].Reg(), args[i].Reg(), kDiscardForSameWReg); } else { DCHECK(pcs[i].IsVRegister()); if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) { Fmov(pcs[i].VReg(), args[i].VReg()); } else { Fcvt(pcs[i].VReg(), args[i].VReg()); } } #endif } // Load the format string into x0, as per the procedure-call standard. // // To make the code as portable as possible, the format string is encoded // directly in the instruction stream. It might be cleaner to encode it in a // literal pool, but since Printf is usually used for debugging, it is // beneficial for it to be minimally dependent on other features. Label format_address; Adr(x0, &format_address); // Emit the format string directly in the instruction stream. { BlockPoolsScope scope(this); Label after_data; B(&after_data); Bind(&format_address); EmitStringData(format); Unreachable(); Bind(&after_data); } CallPrintf(arg_count, pcs); } void TurboAssembler::CallPrintf(int arg_count, const CPURegister* args) { ASM_CODE_COMMENT(this); // A call to printf needs special handling for the simulator, since the system // printf function will use a different instruction set and the procedure-call // standard will not be compatible. if (options().enable_simulator_code) { InstructionAccurateScope scope(this, kPrintfLength / kInstrSize); hlt(kImmExceptionIsPrintf); dc32(arg_count); // kPrintfArgCountOffset // Determine the argument pattern. uint32_t arg_pattern_list = 0; for (int i = 0; i < arg_count; i++) { uint32_t arg_pattern; if (args[i].IsRegister()) { arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX; } else { DCHECK(args[i].Is64Bits()); arg_pattern = kPrintfArgD; } DCHECK(arg_pattern < (1 << kPrintfArgPatternBits)); arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i)); } dc32(arg_pattern_list); // kPrintfArgPatternListOffset return; } Call(ExternalReference::printf_function()); } void TurboAssembler::Printf(const char* format, CPURegister arg0, CPURegister arg1, CPURegister arg2, CPURegister arg3) { ASM_CODE_COMMENT(this); // Printf is expected to preserve all registers, so make sure that none are // available as scratch registers until we've preserved them. RegList old_tmp_list = TmpList()->list(); RegList old_fp_tmp_list = FPTmpList()->list(); TmpList()->set_list(0); FPTmpList()->set_list(0); CPURegList saved_registers = kCallerSaved; saved_registers.Align(); // Preserve all caller-saved registers as well as NZCV. // PushCPURegList asserts that the size of each list is a multiple of 16 // bytes. PushCPURegList<kDontStoreLR>(saved_registers); PushCPURegList(kCallerSavedV); // We can use caller-saved registers as scratch values (except for argN). CPURegList tmp_list = saved_registers; CPURegList fp_tmp_list = kCallerSavedV; tmp_list.Remove(arg0, arg1, arg2, arg3); fp_tmp_list.Remove(arg0, arg1, arg2, arg3); TmpList()->set_list(tmp_list.list()); FPTmpList()->set_list(fp_tmp_list.list()); { UseScratchRegisterScope temps(this); // If any of the arguments are the current stack pointer, allocate a new // register for them, and adjust the value to compensate for pushing the // caller-saved registers. bool arg0_sp = arg0.is_valid() && sp.Aliases(arg0); bool arg1_sp = arg1.is_valid() && sp.Aliases(arg1); bool arg2_sp = arg2.is_valid() && sp.Aliases(arg2); bool arg3_sp = arg3.is_valid() && sp.Aliases(arg3); if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) { // Allocate a register to hold the original stack pointer value, to pass // to PrintfNoPreserve as an argument. Register arg_sp = temps.AcquireX(); Add(arg_sp, sp, saved_registers.TotalSizeInBytes() + kCallerSavedV.TotalSizeInBytes()); if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits()); if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits()); if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits()); if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits()); } // Preserve NZCV. { UseScratchRegisterScope temps(this); Register tmp = temps.AcquireX(); Mrs(tmp, NZCV); Push(tmp, xzr); } PrintfNoPreserve(format, arg0, arg1, arg2, arg3); // Restore NZCV. { UseScratchRegisterScope temps(this); Register tmp = temps.AcquireX(); Pop(xzr, tmp); Msr(NZCV, tmp); } } PopCPURegList(kCallerSavedV); PopCPURegList<kDontLoadLR>(saved_registers); TmpList()->set_list(old_tmp_list); FPTmpList()->set_list(old_fp_tmp_list); } UseScratchRegisterScope::~UseScratchRegisterScope() { available_->set_list(old_available_); availablefp_->set_list(old_availablefp_); } Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) { int code = AcquireNextAvailable(available_).code(); return Register::Create(code, reg.SizeInBits()); } VRegister UseScratchRegisterScope::AcquireSameSizeAs(const VRegister& reg) { int code = AcquireNextAvailable(availablefp_).code(); return VRegister::Create(code, reg.SizeInBits()); } CPURegister UseScratchRegisterScope::AcquireNextAvailable( CPURegList* available) { CHECK(!available->IsEmpty()); CPURegister result = available->PopLowestIndex(); DCHECK(!AreAliased(result, xzr, sp)); return result; } void TurboAssembler::ComputeCodeStartAddress(const Register& rd) { // We can use adr to load a pc relative location. adr(rd, -pc_offset()); } void TurboAssembler::RestoreFPAndLR() { static_assert(StandardFrameConstants::kCallerFPOffset + kSystemPointerSize == StandardFrameConstants::kCallerPCOffset, "Offsets must be consecutive for ldp!"); #ifdef V8_ENABLE_CONTROL_FLOW_INTEGRITY // Make sure we can use x16 and x17. UseScratchRegisterScope temps(this); temps.Exclude(x16, x17); // We can load the return address directly into x17. Add(x16, fp, StandardFrameConstants::kCallerSPOffset); Ldp(fp, x17, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); Autib1716(); Mov(lr, x17); #else Ldp(fp, lr, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); #endif } #if V8_ENABLE_WEBASSEMBLY void TurboAssembler::StoreReturnAddressInWasmExitFrame(Label* return_location) { UseScratchRegisterScope temps(this); temps.Exclude(x16, x17); Adr(x17, return_location); #ifdef V8_ENABLE_CONTROL_FLOW_INTEGRITY Add(x16, fp, WasmExitFrameConstants::kCallingPCOffset + kSystemPointerSize); Pacib1716(); #endif Str(x17, MemOperand(fp, WasmExitFrameConstants::kCallingPCOffset)); } #endif // V8_ENABLE_WEBASSEMBLY void TurboAssembler::I64x2BitMask(Register dst, VRegister src) { ASM_CODE_COMMENT(this); UseScratchRegisterScope scope(this); VRegister tmp1 = scope.AcquireV(kFormat2D); Register tmp2 = scope.AcquireX(); Ushr(tmp1.V2D(), src.V2D(), 63); Mov(dst.X(), tmp1.D(), 0); Mov(tmp2.X(), tmp1.D(), 1); Add(dst.W(), dst.W(), Operand(tmp2.W(), LSL, 1)); } void TurboAssembler::I64x2AllTrue(Register dst, VRegister src) { ASM_CODE_COMMENT(this); UseScratchRegisterScope scope(this); VRegister tmp = scope.AcquireV(kFormat2D); Cmeq(tmp.V2D(), src.V2D(), 0); Addp(tmp.D(), tmp); Fcmp(tmp.D(), tmp.D()); Cset(dst, eq); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM64