%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµùÕ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream
// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H #error This header must be included via macro-assembler.h #endif #ifndef V8_CODEGEN_RISCV64_MACRO_ASSEMBLER_RISCV64_H_ #define V8_CODEGEN_RISCV64_MACRO_ASSEMBLER_RISCV64_H_ #include "src/codegen/assembler.h" #include "src/codegen/riscv64/assembler-riscv64.h" #include "src/common/globals.h" #include "src/execution/isolate-data.h" #include "src/objects/tagged-index.h" namespace v8 { namespace internal { // Forward declarations. enum class AbortReason : uint8_t; // Reserved Register Usage Summary. // // Registers t5, t6, and t3 are reserved for use by the MacroAssembler. // // The programmer should know that the MacroAssembler may clobber these three, // but won't touch other registers except in special cases. // // TODO(RISCV): Cannot find info about this ABI. We chose t6 for now. // Per the RISC-V ABI, register t6 must be used for indirect function call // via 'jalr t6' or 'jr t6' instructions. This is relied upon by gcc when // trying to update gp register for position-independent-code. Whenever // RISC-V generated code calls C code, it must be via t6 register. // Flags used for LeaveExitFrame function. enum LeaveExitFrameMode { EMIT_RETURN = true, NO_EMIT_RETURN = false }; // Flags used for the li macro-assembler function. enum LiFlags { // If the constant value can be represented in just 16 bits, then // optimize the li to use a single instruction, rather than lui/ori/slli // sequence. A number of other optimizations that emits less than // maximum number of instructions exists. OPTIMIZE_SIZE = 0, // Always use 8 instructions (lui/addi/slliw sequence), even if the // constant // could be loaded with just one, so that this value is patchable later. CONSTANT_SIZE = 1, // For address loads 8 instruction are required. Used to mark // constant load that will be used as address without relocation // information. It ensures predictable code size, so specific sites // in code are patchable. ADDRESS_LOAD = 2 }; enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved }; Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg, Register reg3 = no_reg, Register reg4 = no_reg, Register reg5 = no_reg, Register reg6 = no_reg); // ----------------------------------------------------------------------------- // Static helper functions. #if defined(V8_TARGET_LITTLE_ENDIAN) #define SmiWordOffset(offset) (offset + kSystemPointerSize / 2) #else #define SmiWordOffset(offset) offset #endif // Generate a MemOperand for loading a field from an object. inline MemOperand FieldMemOperand(Register object, int offset) { return MemOperand(object, offset - kHeapObjectTag); } // Generate a MemOperand for storing arguments 5..N on the stack // when calling CallCFunction(). // TODO(plind): Currently ONLY used for O32. Should be fixed for // n64, and used in RegExp code, and other places // with more than 8 arguments. inline MemOperand CFunctionArgumentOperand(int index) { DCHECK_GT(index, kCArgSlotCount); // Argument 5 takes the slot just past the four Arg-slots. int offset = (index - 5) * kSystemPointerSize + kCArgsSlotsSize; return MemOperand(sp, offset); } class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase { public: using TurboAssemblerBase::TurboAssemblerBase; // Activation support. void EnterFrame(StackFrame::Type type); void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { // Out-of-line constant pool not implemented on RISC-V. UNREACHABLE(); } void LeaveFrame(StackFrame::Type type); // Generates function and stub prologue code. void StubPrologue(StackFrame::Type type); void Prologue(); void InitializeRootRegister() { ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); li(kRootRegister, Operand(isolate_root)); #ifdef V8_COMPRESS_POINTERS_IN_SHARED_CAGE LoadRootRelative(kPtrComprCageBaseRegister, IsolateData::cage_base_offset()); #endif } // Jump unconditionally to given label. void jmp(Label* L) { Branch(L); } // ------------------------------------------------------------------------- // Debugging. void Trap(); void DebugBreak(); // Calls Abort(msg) if the condition cc is not satisfied. // Use --debug_code to enable. void Assert(Condition cc, AbortReason reason, Register rs, Operand rt); // Like Assert(), but always enabled. void Check(Condition cc, AbortReason reason, Register rs, Operand rt); // Print a message to stdout and abort execution. void Abort(AbortReason msg); // Arguments macros. #define COND_TYPED_ARGS Condition cond, Register r1, const Operand &r2 #define COND_ARGS cond, r1, r2 // Cases when relocation is not needed. #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \ void Name(target_type target); \ void Name(target_type target, COND_TYPED_ARGS); #define DECLARE_BRANCH_PROTOTYPES(Name) \ DECLARE_NORELOC_PROTOTYPE(Name, Label*) \ DECLARE_NORELOC_PROTOTYPE(Name, int32_t) DECLARE_BRANCH_PROTOTYPES(BranchAndLink) DECLARE_BRANCH_PROTOTYPES(BranchShort) void Branch(Label* target); void Branch(int32_t target); void BranchLong(Label* L); void Branch(Label* target, Condition cond, Register r1, const Operand& r2, Label::Distance near_jump = Label::kFar); void Branch(int32_t target, Condition cond, Register r1, const Operand& r2, Label::Distance near_jump = Label::kFar); #undef DECLARE_BRANCH_PROTOTYPES #undef COND_TYPED_ARGS #undef COND_ARGS void AllocateStackSpace(Register bytes) { Sub64(sp, sp, bytes); } void AllocateStackSpace(int bytes) { DCHECK_GE(bytes, 0); if (bytes == 0) return; Sub64(sp, sp, Operand(bytes)); } inline void NegateBool(Register rd, Register rs) { Xor(rd, rs, 1); } // Compare float, if any operand is NaN, result is false except for NE void CompareF32(Register rd, FPUCondition cc, FPURegister cmp1, FPURegister cmp2); // Compare double, if any operand is NaN, result is false except for NE void CompareF64(Register rd, FPUCondition cc, FPURegister cmp1, FPURegister cmp2); void CompareIsNotNanF32(Register rd, FPURegister cmp1, FPURegister cmp2); void CompareIsNotNanF64(Register rd, FPURegister cmp1, FPURegister cmp2); void CompareIsNanF32(Register rd, FPURegister cmp1, FPURegister cmp2); void CompareIsNanF64(Register rd, FPURegister cmp1, FPURegister cmp2); // Floating point branches void BranchTrueShortF(Register rs, Label* target); void BranchFalseShortF(Register rs, Label* target); void BranchTrueF(Register rs, Label* target); void BranchFalseF(Register rs, Label* target); void Branch(Label* L, Condition cond, Register rs, RootIndex index); static int InstrCountForLi64Bit(int64_t value); inline void LiLower32BitHelper(Register rd, Operand j); void li_optimized(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); // Load int32 in the rd register. void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) { li(rd, Operand(j), mode); } inline void Move(Register output, MemOperand operand) { Ld(output, operand); } void li(Register dst, Handle<HeapObject> value, RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT); void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE); void li(Register dst, const StringConstantBase* string, LiFlags mode = OPTIMIZE_SIZE); void LoadFromConstantsTable(Register destination, int constant_index) final; void LoadRootRegisterOffset(Register destination, intptr_t offset) final; void LoadRootRelative(Register destination, int32_t offset) final; inline void GenPCRelativeJump(Register rd, int64_t imm32) { DCHECK(is_int32(imm32)); int32_t Hi20 = (((int32_t)imm32 + 0x800) >> 12); int32_t Lo12 = (int32_t)imm32 << 20 >> 20; auipc(rd, Hi20); // Read PC + Hi20 into scratch. jr(rd, Lo12); // jump PC + Hi20 + Lo12 } inline void GenPCRelativeJumpAndLink(Register rd, int64_t imm32) { DCHECK(is_int32(imm32)); int32_t Hi20 = (((int32_t)imm32 + 0x800) >> 12); int32_t Lo12 = (int32_t)imm32 << 20 >> 20; auipc(rd, Hi20); // Read PC + Hi20 into scratch. jalr(rd, Lo12); // jump PC + Hi20 + Lo12 } // Jump, Call, and Ret pseudo instructions implementing inter-working. #define COND_ARGS \ Condition cond = al, Register rs = zero_reg, \ const Operand &rt = Operand(zero_reg) void Jump(Register target, COND_ARGS); void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS); void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS); // Deffer from li, this method save target to the memory, and then load // it to register use ld, it can be used in wasm jump table for concurrent // patching. void PatchAndJump(Address target); void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS); void Jump(const ExternalReference& reference); void Call(Register target, COND_ARGS); void Call(Address target, RelocInfo::Mode rmode, COND_ARGS); void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, COND_ARGS); void Call(Label* target); void LoadAddress( Register dst, Label* target, RelocInfo::Mode rmode = RelocInfo::INTERNAL_REFERENCE_ENCODED); // Load the builtin given by the Smi in |builtin| into the same // register. void LoadEntryFromBuiltinIndex(Register builtin); void LoadEntryFromBuiltin(Builtin builtin, Register destination); MemOperand EntryFromBuiltinAsOperand(Builtin builtin); void CallBuiltinByIndex(Register builtin); void CallBuiltin(Builtin builtin); void TailCallBuiltin(Builtin builtin); void LoadCodeObjectEntry(Register destination, Register code_object); void CallCodeObject(Register code_object); void JumpCodeObject(Register code_object, JumpMode jump_mode = JumpMode::kJump); // Generates an instruction sequence s.t. the return address points to the // instruction following the call. // The return address on the stack is used by frame iteration. void StoreReturnAddressAndCall(Register target); void CallForDeoptimization(Builtin target, int deopt_id, Label* exit, DeoptimizeKind kind, Label* ret, Label* jump_deoptimization_entry_label); void Ret(COND_ARGS); // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the sp register. void Drop(int count, Condition cond = cc_always, Register reg = no_reg, const Operand& op = Operand(no_reg)); // Trivial case of DropAndRet that only emits 2 instructions. void DropAndRet(int drop); void DropAndRet(int drop, Condition cond, Register reg, const Operand& op); void Ld(Register rd, const MemOperand& rs); void Sd(Register rd, const MemOperand& rs); void push(Register src) { Add64(sp, sp, Operand(-kSystemPointerSize)); Sd(src, MemOperand(sp, 0)); } void Push(Register src) { push(src); } void Push(Handle<HeapObject> handle); void Push(Smi smi); // Push two registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2) { Sub64(sp, sp, Operand(2 * kSystemPointerSize)); Sd(src1, MemOperand(sp, 1 * kSystemPointerSize)); Sd(src2, MemOperand(sp, 0 * kSystemPointerSize)); } // Push three registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3) { Sub64(sp, sp, Operand(3 * kSystemPointerSize)); Sd(src1, MemOperand(sp, 2 * kSystemPointerSize)); Sd(src2, MemOperand(sp, 1 * kSystemPointerSize)); Sd(src3, MemOperand(sp, 0 * kSystemPointerSize)); } // Push four registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3, Register src4) { Sub64(sp, sp, Operand(4 * kSystemPointerSize)); Sd(src1, MemOperand(sp, 3 * kSystemPointerSize)); Sd(src2, MemOperand(sp, 2 * kSystemPointerSize)); Sd(src3, MemOperand(sp, 1 * kSystemPointerSize)); Sd(src4, MemOperand(sp, 0 * kSystemPointerSize)); } // Push five registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3, Register src4, Register src5) { Sub64(sp, sp, Operand(5 * kSystemPointerSize)); Sd(src1, MemOperand(sp, 4 * kSystemPointerSize)); Sd(src2, MemOperand(sp, 3 * kSystemPointerSize)); Sd(src3, MemOperand(sp, 2 * kSystemPointerSize)); Sd(src4, MemOperand(sp, 1 * kSystemPointerSize)); Sd(src5, MemOperand(sp, 0 * kSystemPointerSize)); } void Push(Register src, Condition cond, Register tst1, Register tst2) { // Since we don't have conditional execution we use a Branch. Branch(3, cond, tst1, Operand(tst2)); Sub64(sp, sp, Operand(kSystemPointerSize)); Sd(src, MemOperand(sp, 0)); } enum PushArrayOrder { kNormal, kReverse }; void PushArray(Register array, Register size, PushArrayOrder order = kNormal); void MaybeSaveRegisters(RegList registers); void MaybeRestoreRegisters(RegList registers); void CallEphemeronKeyBarrier(Register object, Register slot_address, SaveFPRegsMode fp_mode); void CallRecordWriteStubSaveRegisters( Register object, Register slot_address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, StubCallMode mode = StubCallMode::kCallBuiltinPointer); void CallRecordWriteStub( Register object, Register slot_address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, StubCallMode mode = StubCallMode::kCallBuiltinPointer); // Push multiple registers on the stack. // Registers are saved in numerical order, with higher numbered registers // saved in higher memory addresses. void MultiPush(RegList regs); void MultiPushFPU(RegList regs); // Calculate how much stack space (in bytes) are required to store caller // registers excluding those specified in the arguments. int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg) const; // Push caller saved registers on the stack, and return the number of bytes // stack pointer is adjusted. int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); // Restore caller saved registers from the stack, and return the number of // bytes stack pointer is adjusted. int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); void pop(Register dst) { Ld(dst, MemOperand(sp, 0)); Add64(sp, sp, Operand(kSystemPointerSize)); } void Pop(Register dst) { pop(dst); } // Pop two registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2) { DCHECK(src1 != src2); Ld(src2, MemOperand(sp, 0 * kSystemPointerSize)); Ld(src1, MemOperand(sp, 1 * kSystemPointerSize)); Add64(sp, sp, 2 * kSystemPointerSize); } // Pop three registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2, Register src3) { Ld(src3, MemOperand(sp, 0 * kSystemPointerSize)); Ld(src2, MemOperand(sp, 1 * kSystemPointerSize)); Ld(src1, MemOperand(sp, 2 * kSystemPointerSize)); Add64(sp, sp, 3 * kSystemPointerSize); } void Pop(uint32_t count = 1) { Add64(sp, sp, Operand(count * kSystemPointerSize)); } // Pops multiple values from the stack and load them in the // registers specified in regs. Pop order is the opposite as in MultiPush. void MultiPop(RegList regs); void MultiPopFPU(RegList regs); #define DEFINE_INSTRUCTION(instr) \ void instr(Register rd, Register rs, const Operand& rt); \ void instr(Register rd, Register rs, Register rt) { \ instr(rd, rs, Operand(rt)); \ } \ void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); } #define DEFINE_INSTRUCTION2(instr) \ void instr(Register rs, const Operand& rt); \ void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \ void instr(Register rs, int32_t j) { instr(rs, Operand(j)); } #define DEFINE_INSTRUCTION3(instr) void instr(Register rd, int64_t imm); DEFINE_INSTRUCTION(Add32) DEFINE_INSTRUCTION(Add64) DEFINE_INSTRUCTION(Div32) DEFINE_INSTRUCTION(Divu32) DEFINE_INSTRUCTION(Divu64) DEFINE_INSTRUCTION(Mod32) DEFINE_INSTRUCTION(Modu32) DEFINE_INSTRUCTION(Div64) DEFINE_INSTRUCTION(Sub32) DEFINE_INSTRUCTION(Sub64) DEFINE_INSTRUCTION(Mod64) DEFINE_INSTRUCTION(Modu64) DEFINE_INSTRUCTION(Mul32) DEFINE_INSTRUCTION(Mulh32) DEFINE_INSTRUCTION(Mul64) DEFINE_INSTRUCTION(Mulh64) DEFINE_INSTRUCTION2(Div32) DEFINE_INSTRUCTION2(Div64) DEFINE_INSTRUCTION2(Divu32) DEFINE_INSTRUCTION2(Divu64) DEFINE_INSTRUCTION(And) DEFINE_INSTRUCTION(Or) DEFINE_INSTRUCTION(Xor) DEFINE_INSTRUCTION(Nor) DEFINE_INSTRUCTION2(Neg) DEFINE_INSTRUCTION(Slt) DEFINE_INSTRUCTION(Sltu) DEFINE_INSTRUCTION(Sle) DEFINE_INSTRUCTION(Sleu) DEFINE_INSTRUCTION(Sgt) DEFINE_INSTRUCTION(Sgtu) DEFINE_INSTRUCTION(Sge) DEFINE_INSTRUCTION(Sgeu) DEFINE_INSTRUCTION(Seq) DEFINE_INSTRUCTION(Sne) DEFINE_INSTRUCTION(Sll64) DEFINE_INSTRUCTION(Sra64) DEFINE_INSTRUCTION(Srl64) DEFINE_INSTRUCTION(Sll32) DEFINE_INSTRUCTION(Sra32) DEFINE_INSTRUCTION(Srl32) DEFINE_INSTRUCTION2(Seqz) DEFINE_INSTRUCTION2(Snez) DEFINE_INSTRUCTION(Ror) DEFINE_INSTRUCTION(Dror) DEFINE_INSTRUCTION3(Li) DEFINE_INSTRUCTION2(Mv) #undef DEFINE_INSTRUCTION #undef DEFINE_INSTRUCTION2 #undef DEFINE_INSTRUCTION3 void SmiUntag(Register dst, const MemOperand& src); void SmiUntag(Register dst, Register src) { DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits()); if (COMPRESS_POINTERS_BOOL) { sraiw(dst, src, kSmiShift); } else { srai(dst, src, kSmiShift); } } void SmiUntag(Register reg) { SmiUntag(reg, reg); } int CalculateStackPassedDWords(int num_gp_arguments, int num_fp_arguments); // Before calling a C-function from generated code, align arguments on stack. // After aligning the frame, non-register arguments must be stored on the // stack, using helper: CFunctionArgumentOperand(). // The argument count assumes all arguments are word sized. // Some compilers/platforms require the stack to be aligned when calling // C++ code. // Needs a scratch register to do some arithmetic. This register will be // trashed. void PrepareCallCFunction(int num_reg_arguments, int num_double_registers, Register scratch); void PrepareCallCFunction(int num_reg_arguments, Register scratch); // Arguments 1-8 are placed in registers a0 through a7 respectively. // Arguments 9..n are stored to stack // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); void CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments); void CallCFunction(Register function, int num_reg_arguments, int num_double_arguments); void MovFromFloatResult(DoubleRegister dst); void MovFromFloatParameter(DoubleRegister dst); // These functions abstract parameter passing for the three different ways // we call C functions from generated code. void MovToFloatParameter(DoubleRegister src); void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2); void MovToFloatResult(DoubleRegister src); // See comments at the beginning of Builtins::Generate_CEntry. inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); } inline void PrepareCEntryFunction(const ExternalReference& ref) { li(a1, ref); } void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met); #undef COND_ARGS // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. See ECMA-262 9.5: ToInt32. // Exits with 'result' holding the answer. void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result, DoubleRegister double_input, StubCallMode stub_mode); void CompareI(Register rd, Register rs, const Operand& rt, Condition cond); void LoadZeroIfConditionNotZero(Register dest, Register condition); void LoadZeroIfConditionZero(Register dest, Register condition); void SignExtendByte(Register rd, Register rs) { slli(rd, rs, 64 - 8); srai(rd, rd, 64 - 8); } void SignExtendShort(Register rd, Register rs) { slli(rd, rs, 64 - 16); srai(rd, rd, 64 - 16); } void SignExtendWord(Register rd, Register rs) { sext_w(rd, rs); } void ZeroExtendWord(Register rd, Register rs) { slli(rd, rs, 32); srli(rd, rd, 32); } void Clz32(Register rd, Register rs); void Clz64(Register rd, Register rs); void Ctz32(Register rd, Register rs); void Ctz64(Register rd, Register rs); void Popcnt32(Register rd, Register rs); void Popcnt64(Register rd, Register rs); // Bit field starts at bit pos and extending for size bits is extracted from // rs and stored zero/sign-extended and right-justified in rt void ExtractBits(Register rt, Register rs, uint16_t pos, uint16_t size, bool sign_extend = false); void ExtractBits(Register dest, Register source, Register pos, int size, bool sign_extend = false) { sra(dest, source, pos); ExtractBits(dest, dest, 0, size, sign_extend); } // Insert bits [0, size) of source to bits [pos, pos+size) of dest void InsertBits(Register dest, Register source, Register pos, int size); void Neg_s(FPURegister fd, FPURegister fs); void Neg_d(FPURegister fd, FPURegister fs); // Change endianness void ByteSwap(Register dest, Register src, int operand_size); void Clear_if_nan_d(Register rd, FPURegister fs); void Clear_if_nan_s(Register rd, FPURegister fs); // Convert single to unsigned word. void Trunc_uw_s(Register rd, FPURegister fs, Register result = no_reg); // helper functions for unaligned load/store template <int NBYTES, bool IS_SIGNED> void UnalignedLoadHelper(Register rd, const MemOperand& rs); template <int NBYTES> void UnalignedStoreHelper(Register rd, const MemOperand& rs, Register scratch_other = no_reg); template <int NBYTES> void UnalignedFLoadHelper(FPURegister frd, const MemOperand& rs); template <int NBYTES> void UnalignedFStoreHelper(FPURegister frd, const MemOperand& rs); template <typename Reg_T, typename Func> void AlignedLoadHelper(Reg_T target, const MemOperand& rs, Func generator); template <typename Reg_T, typename Func> void AlignedStoreHelper(Reg_T value, const MemOperand& rs, Func generator); template <int NBYTES, bool LOAD_SIGNED> void LoadNBytes(Register rd, const MemOperand& rs, Register scratch); template <int NBYTES, bool LOAD_SIGNED> void LoadNBytesOverwritingBaseReg(const MemOperand& rs, Register scratch0, Register scratch1); // load/store macros void Ulh(Register rd, const MemOperand& rs); void Ulhu(Register rd, const MemOperand& rs); void Ush(Register rd, const MemOperand& rs); void Ulw(Register rd, const MemOperand& rs); void Ulwu(Register rd, const MemOperand& rs); void Usw(Register rd, const MemOperand& rs); void Uld(Register rd, const MemOperand& rs); void Usd(Register rd, const MemOperand& rs); void ULoadFloat(FPURegister fd, const MemOperand& rs); void UStoreFloat(FPURegister fd, const MemOperand& rs); void ULoadDouble(FPURegister fd, const MemOperand& rs); void UStoreDouble(FPURegister fd, const MemOperand& rs); void Lb(Register rd, const MemOperand& rs); void Lbu(Register rd, const MemOperand& rs); void Sb(Register rd, const MemOperand& rs); void Lh(Register rd, const MemOperand& rs); void Lhu(Register rd, const MemOperand& rs); void Sh(Register rd, const MemOperand& rs); void Lw(Register rd, const MemOperand& rs); void Lwu(Register rd, const MemOperand& rs); void Sw(Register rd, const MemOperand& rs); void LoadFloat(FPURegister fd, const MemOperand& src); void StoreFloat(FPURegister fs, const MemOperand& dst); void LoadDouble(FPURegister fd, const MemOperand& src); void StoreDouble(FPURegister fs, const MemOperand& dst); void Ll(Register rd, const MemOperand& rs); void Sc(Register rd, const MemOperand& rs); void Lld(Register rd, const MemOperand& rs); void Scd(Register rd, const MemOperand& rs); void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2); void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2); void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2); void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2); template <typename F> void FloatMinMaxHelper(FPURegister dst, FPURegister src1, FPURegister src2, MaxMinKind kind); bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; } bool IsSingleZeroRegSet() { return has_single_zero_reg_set_; } inline void Move(Register dst, Smi smi) { li(dst, Operand(smi)); } inline void Move(Register dst, Register src) { if (dst != src) { mv(dst, src); } } inline void MoveDouble(FPURegister dst, FPURegister src) { if (dst != src) fmv_d(dst, src); } inline void MoveFloat(FPURegister dst, FPURegister src) { if (dst != src) fmv_s(dst, src); } inline void Move(FPURegister dst, FPURegister src) { MoveDouble(dst, src); } inline void Move(Register dst_low, Register dst_high, FPURegister src) { fmv_x_d(dst_high, src); fmv_x_w(dst_low, src); srli(dst_high, dst_high, 32); } inline void Move(Register dst, FPURegister src) { fmv_x_d(dst, src); } inline void Move(FPURegister dst, Register src) { fmv_d_x(dst, src); } // Extract sign-extended word from high-half of FPR to GPR inline void ExtractHighWordFromF64(Register dst_high, FPURegister src) { fmv_x_d(dst_high, src); srai(dst_high, dst_high, 32); } // Insert low-word from GPR (src_high) to the high-half of FPR (dst) void InsertHighWordF64(FPURegister dst, Register src_high); // Extract sign-extended word from low-half of FPR to GPR inline void ExtractLowWordFromF64(Register dst_low, FPURegister src) { fmv_x_w(dst_low, src); } // Insert low-word from GPR (src_high) to the low-half of FPR (dst) void InsertLowWordF64(FPURegister dst, Register src_low); void LoadFPRImmediate(FPURegister dst, float imm) { LoadFPRImmediate(dst, bit_cast<uint32_t>(imm)); } void LoadFPRImmediate(FPURegister dst, double imm) { LoadFPRImmediate(dst, bit_cast<uint64_t>(imm)); } void LoadFPRImmediate(FPURegister dst, uint32_t src); void LoadFPRImmediate(FPURegister dst, uint64_t src); // AddOverflow64 sets overflow register to a negative value if // overflow occured, otherwise it is zero or positive void AddOverflow64(Register dst, Register left, const Operand& right, Register overflow); // SubOverflow64 sets overflow register to a negative value if // overflow occured, otherwise it is zero or positive void SubOverflow64(Register dst, Register left, const Operand& right, Register overflow); // MulOverflow32 sets overflow register to zero if no overflow occured void MulOverflow32(Register dst, Register left, const Operand& right, Register overflow); // MIPS-style 32-bit unsigned mulh void Mulhu32(Register dst, Register left, const Operand& right, Register left_zero, Register right_zero); // Number of instructions needed for calculation of switch table entry address static const int kSwitchTablePrologueSize = 6; // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a // functor/function with 'Label *func(size_t index)' declaration. template <typename Func> void GenerateSwitchTable(Register index, size_t case_count, Func GetLabelFunction); // Load an object from the root table. void LoadRoot(Register destination, RootIndex index) final; void LoadRoot(Register destination, RootIndex index, Condition cond, Register src1, const Operand& src2); void LoadMap(Register destination, Register object); // If the value is a NaN, canonicalize the value else, do nothing. void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src); // --------------------------------------------------------------------------- // FPU macros. These do not handle special cases like NaN or +- inf. // Convert unsigned word to double. void Cvt_d_uw(FPURegister fd, Register rs); // convert signed word to double. void Cvt_d_w(FPURegister fd, Register rs); // Convert unsigned long to double. void Cvt_d_ul(FPURegister fd, Register rs); // Convert unsigned word to float. void Cvt_s_uw(FPURegister fd, Register rs); // convert signed word to float. void Cvt_s_w(FPURegister fd, Register rs); // Convert unsigned long to float. void Cvt_s_ul(FPURegister fd, Register rs); // Convert double to unsigned word. void Trunc_uw_d(Register rd, FPURegister fs, Register result = no_reg); // Convert double to signed word. void Trunc_w_d(Register rd, FPURegister fs, Register result = no_reg); // Convert single to signed word. void Trunc_w_s(Register rd, FPURegister fs, Register result = no_reg); // Convert double to unsigned long. void Trunc_ul_d(Register rd, FPURegister fs, Register result = no_reg); // Convert singled to signed long. void Trunc_l_d(Register rd, FPURegister fs, Register result = no_reg); // Convert single to unsigned long. void Trunc_ul_s(Register rd, FPURegister fs, Register result = no_reg); // Convert singled to signed long. void Trunc_l_s(Register rd, FPURegister fs, Register result = no_reg); // Round single to signed word. void Round_w_s(Register rd, FPURegister fs, Register result = no_reg); // Round double to signed word. void Round_w_d(Register rd, FPURegister fs, Register result = no_reg); // Ceil single to signed word. void Ceil_w_s(Register rd, FPURegister fs, Register result = no_reg); // Ceil double to signed word. void Ceil_w_d(Register rd, FPURegister fs, Register result = no_reg); // Floor single to signed word. void Floor_w_s(Register rd, FPURegister fs, Register result = no_reg); // Floor double to signed word. void Floor_w_d(Register rd, FPURegister fs, Register result = no_reg); // Round double functions void Trunc_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); void Round_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); void Floor_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); void Ceil_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); // Round float functions void Trunc_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); void Round_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); void Floor_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); void Ceil_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); // Jump the register contains a smi. void JumpIfSmi(Register value, Label* smi_label); void JumpIfEqual(Register a, int32_t b, Label* dest) { Branch(dest, eq, a, Operand(b)); } void JumpIfLessThan(Register a, int32_t b, Label* dest) { Branch(dest, lt, a, Operand(b)); } // Push a standard frame, consisting of ra, fp, context and JS function. void PushStandardFrame(Register function_reg); // Get the actual activation frame alignment for target environment. static int ActivationFrameAlignment(); // Calculated scaled address (rd) as rt + rs << sa void CalcScaledAddress(Register rd, Register rs, Register rt, uint8_t sa); // Compute the start of the generated instruction stream from the current PC. // This is an alternative to embedding the {CodeObject} handle as a reference. void ComputeCodeStartAddress(Register dst); // Control-flow integrity: // Define a function entrypoint. This doesn't emit any code for this // architecture, as control-flow integrity is not supported for it. void CodeEntry() {} // Define an exception handler. void ExceptionHandler() {} // Define an exception handler and bind a label. void BindExceptionHandler(Label* label) { bind(label); } // --------------------------------------------------------------------------- // Pointer compression Support // Loads a field containing a HeapObject and decompresses it if pointer // compression is enabled. void LoadTaggedPointerField(const Register& destination, const MemOperand& field_operand); // Loads a field containing any tagged value and decompresses it if necessary. void LoadAnyTaggedField(const Register& destination, const MemOperand& field_operand); // Loads a field containing a tagged signed value and decompresses it if // necessary. void LoadTaggedSignedField(const Register& destination, const MemOperand& field_operand); // Loads a field containing smi value and untags it. void SmiUntagField(Register dst, const MemOperand& src); // Compresses and stores tagged value to given on-heap location. void StoreTaggedField(const Register& value, const MemOperand& dst_field_operand); void DecompressTaggedSigned(const Register& destination, const MemOperand& field_operand); void DecompressTaggedPointer(const Register& destination, const MemOperand& field_operand); void DecompressTaggedPointer(const Register& destination, const Register& source); void DecompressAnyTagged(const Register& destination, const MemOperand& field_operand); void CmpTagged(const Register& rd, const Register& rs1, const Register& rs2) { if (COMPRESS_POINTERS_BOOL) { Sub32(rd, rs1, rs2); } else { Sub64(rd, rs1, rs2); } } protected: inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch); inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits); private: bool has_double_zero_reg_set_ = false; bool has_single_zero_reg_set_ = false; // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it // succeeds, otherwise falls through if result is saturated. On return // 'result' either holds answer, or is clobbered on fall through. void TryInlineTruncateDoubleToI(Register result, DoubleRegister input, Label* done); void CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments); // TODO(RISCV) Reorder parameters so out parameters come last. bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits); bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits, Register* scratch, const Operand& rt); void BranchShortHelper(int32_t offset, Label* L); bool BranchShortHelper(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt); bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt); void BranchAndLinkShortHelper(int32_t offset, Label* L); void BranchAndLinkShort(int32_t offset); void BranchAndLinkShort(Label* L); bool BranchAndLinkShortHelper(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt); bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond, Register rs, const Operand& rt); void BranchAndLinkLong(Label* L); template <typename F_TYPE> void RoundHelper(FPURegister dst, FPURegister src, FPURegister fpu_scratch, RoundingMode mode); template <typename TruncFunc> void RoundFloatingPointToInteger(Register rd, FPURegister fs, Register result, TruncFunc trunc); // Push a fixed frame, consisting of ra, fp. void PushCommonFrame(Register marker_reg = no_reg); }; // MacroAssembler implements a collection of frequently used macros. class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler { public: using TurboAssembler::TurboAssembler; // It assumes that the arguments are located below the stack pointer. // argc is the number of arguments not including the receiver. // TODO(victorgomes): Remove this function once we stick with the reversed // arguments order. void LoadReceiver(Register dest, Register argc) { Ld(dest, MemOperand(sp, 0)); } void StoreReceiver(Register rec, Register argc, Register scratch) { Sd(rec, MemOperand(sp, 0)); } bool IsNear(Label* L, Condition cond, int rs_reg); // Swap two registers. If the scratch register is omitted then a slightly // less efficient form using xor instead of mov is emitted. void Swap(Register reg1, Register reg2, Register scratch = no_reg); void PushRoot(RootIndex index) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); LoadRoot(scratch, index); Push(scratch); } // Compare the object in a register to a value and jump if they are equal. void JumpIfRoot(Register with, RootIndex index, Label* if_equal) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); LoadRoot(scratch, index); Branch(if_equal, eq, with, Operand(scratch)); } // Compare the object in a register to a value and jump if they are not equal. void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); LoadRoot(scratch, index); Branch(if_not_equal, ne, with, Operand(scratch)); } // Checks if value is in range [lower_limit, higher_limit] using a single // comparison. void JumpIfIsInRange(Register value, unsigned lower_limit, unsigned higher_limit, Label* on_in_range); // --------------------------------------------------------------------------- // GC Support // Notify the garbage collector that we wrote a pointer into an object. // |object| is the object being stored into, |value| is the object being // stored. value and scratch registers are clobbered by the operation. // The offset is the offset from the start of the object, not the offset from // the tagged HeapObject pointer. For use with FieldOperand(reg, off). void RecordWriteField( Register object, int offset, Register value, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = RememberedSetAction::kEmit, SmiCheck smi_check = SmiCheck::kInline); // For a given |object| notify the garbage collector that the slot |address| // has been written. |value| is the object being stored. The value and // address registers are clobbered by the operation. void RecordWrite( Register object, Operand offset, Register value, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = RememberedSetAction::kEmit, SmiCheck smi_check = SmiCheck::kInline); // void Pref(int32_t hint, const MemOperand& rs); // --------------------------------------------------------------------------- // Pseudo-instructions. void LoadWordPair(Register rd, const MemOperand& rs); void StoreWordPair(Register rd, const MemOperand& rs); void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); // Enter exit frame. // argc - argument count to be dropped by LeaveExitFrame. // save_doubles - saves FPU registers on stack, currently disabled. // stack_space - extra stack space. void EnterExitFrame(bool save_doubles, int stack_space = 0, StackFrame::Type frame_type = StackFrame::EXIT); // Leave the current exit frame. void LeaveExitFrame(bool save_doubles, Register arg_count, bool do_return = NO_EMIT_RETURN, bool argument_count_is_length = false); // Make sure the stack is aligned. Only emits code in debug mode. void AssertStackIsAligned(); // Load the global proxy from the current context. void LoadGlobalProxy(Register dst) { LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX); } void LoadNativeContextSlot(Register dst, int index); // Load the initial map from the global function. The registers // function and map can be the same, function is then overwritten. void LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch); // ------------------------------------------------------------------------- // JavaScript invokes. // Invoke the JavaScript function code by either calling or jumping. void InvokeFunctionCode(Register function, Register new_target, Register expected_parameter_count, Register actual_parameter_count, InvokeType type); // On function call, call into the debugger if necessary. void CheckDebugHook(Register fun, Register new_target, Register expected_parameter_count, Register actual_parameter_count); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunctionWithNewTarget(Register function, Register new_target, Register actual_parameter_count, InvokeType type); void InvokeFunction(Register function, Register expected_parameter_count, Register actual_parameter_count, InvokeType type); // Exception handling. // Push a new stack handler and link into stack handler chain. void PushStackHandler(); // Unlink the stack handler on top of the stack from the stack handler chain. // Must preserve the result register. void PopStackHandler(); // ------------------------------------------------------------------------- // Support functions. void GetObjectType(Register function, Register map, Register type_reg); void GetInstanceTypeRange(Register map, Register type_reg, InstanceType lower_limit, Register range); // ------------------------------------------------------------------------- // Runtime calls. // Call a runtime routine. void CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore); // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, save_doubles); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, int num_arguments, SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) { CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); } // Convenience function: tail call a runtime routine (jump). void TailCallRuntime(Runtime::FunctionId fid); // Jump to the builtin routine. void JumpToExternalReference(const ExternalReference& builtin, bool builtin_exit_frame = false); // Generates a trampoline to jump to the off-heap instruction stream. void JumpToInstructionStream(Address entry); // --------------------------------------------------------------------------- // In-place weak references. void LoadWeakValue(Register out, Register in, Label* target_if_cleared); // ------------------------------------------------------------------------- // StatsCounter support. void IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (!FLAG_native_code_counters) return; EmitIncrementCounter(counter, value, scratch1, scratch2); } void EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); void DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (!FLAG_native_code_counters) return; EmitDecrementCounter(counter, value, scratch1, scratch2); } void EmitDecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); // ------------------------------------------------------------------------- // Stack limit utilities enum StackLimitKind { kInterruptStackLimit, kRealStackLimit }; void LoadStackLimit(Register destination, StackLimitKind kind); void StackOverflowCheck(Register num_args, Register scratch1, Register scratch2, Label* stack_overflow, Label* done = nullptr); // ------------------------------------------------------------------------- // Smi utilities. void SmiTag(Register dst, Register src) { STATIC_ASSERT(kSmiTag == 0); if (SmiValuesAre32Bits()) { // Smi goes to upper 32 slli(dst, src, 32); } else { DCHECK(SmiValuesAre31Bits()); // Smi is shifted left by 1 Add32(dst, src, src); } } void SmiTag(Register reg) { SmiTag(reg, reg); } // Left-shifted from int32 equivalent of Smi. void SmiScale(Register dst, Register src, int scale) { if (SmiValuesAre32Bits()) { // The int portion is upper 32-bits of 64-bit word. srai(dst, src, (kSmiShift - scale) & 0x3F); } else { DCHECK(SmiValuesAre31Bits()); DCHECK_GE(scale, kSmiTagSize); slliw(dst, src, scale - kSmiTagSize); } } // Test if the register contains a smi. inline void SmiTst(Register value, Register scratch) { And(scratch, value, Operand(kSmiTagMask)); } // Jump if the register contains a non-smi. void JumpIfNotSmi(Register value, Label* not_smi_label); // Abort execution if argument is a smi, enabled via --debug-code. void AssertNotSmi(Register object); void AssertSmi(Register object); // Abort execution if argument is not a Constructor, enabled via --debug-code. void AssertConstructor(Register object); // Abort execution if argument is not a JSFunction, enabled via --debug-code. void AssertFunction(Register object); // Abort execution if argument is not a JSBoundFunction, // enabled via --debug-code. void AssertBoundFunction(Register object); // Abort execution if argument is not a JSGeneratorObject (or subclass), // enabled via --debug-code. void AssertGeneratorObject(Register object); // Abort execution if argument is not undefined or an AllocationSite, enabled // via --debug-code. void AssertUndefinedOrAllocationSite(Register object, Register scratch); template <typename Field> void DecodeField(Register dst, Register src) { ExtractBits(dst, src, Field::kShift, Field::kSize); } template <typename Field> void DecodeField(Register reg) { DecodeField<Field>(reg, reg); } private: // Helper functions for generating invokes. void InvokePrologue(Register expected_parameter_count, Register actual_parameter_count, Label* done, InvokeType type); // Compute memory operands for safepoint stack slots. static int SafepointRegisterStackIndex(int reg_code); // Needs access to SafepointRegisterStackIndex for compiled frame // traversal. friend class CommonFrame; DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler); }; template <typename Func> void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count, Func GetLabelFunction) { // Ensure that dd-ed labels following this instruction use 8 bytes aligned // addresses. BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + kSwitchTablePrologueSize); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Register scratch2 = temps.Acquire(); Align(8); // Load the address from the jump table at index and jump to it auipc(scratch, 0); // Load the current PC into scratch slli(scratch2, index, kSystemPointerSizeLog2); // scratch2 = offset of indexth entry add(scratch2, scratch2, scratch); // scratch2 = (saved PC) + (offset of indexth entry) ld(scratch2, scratch2, 6 * kInstrSize); // Add the size of these 6 instructions to the // offset, then load jr(scratch2); // Jump to the address loaded from the table nop(); // For 16-byte alignment for (size_t index = 0; index < case_count; ++index) { dd(GetLabelFunction(index)); } } #define ACCESS_MASM(masm) masm-> } // namespace internal } // namespace v8 #endif // V8_CODEGEN_RISCV64_MACRO_ASSEMBLER_RISCV64_H_