%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµùÕ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream
// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <limits> #include "src/base/overflowing-math.h" #include "src/codegen/assembler.h" #include "src/codegen/cpu-features.h" #include "src/codegen/external-reference.h" #include "src/codegen/macro-assembler.h" #include "src/codegen/optimized-compilation-info.h" #include "src/codegen/x64/assembler-x64.h" #include "src/codegen/x64/register-x64.h" #include "src/common/globals.h" #include "src/compiler/backend/code-generator-impl.h" #include "src/compiler/backend/code-generator.h" #include "src/compiler/backend/gap-resolver.h" #include "src/compiler/backend/instruction-codes.h" #include "src/compiler/node-matchers.h" #include "src/compiler/osr.h" #include "src/heap/memory-chunk.h" #include "src/objects/code-kind.h" #include "src/objects/smi.h" #if V8_ENABLE_WEBASSEMBLY #include "src/wasm/wasm-code-manager.h" #include "src/wasm/wasm-objects.h" #endif // V8_ENABLE_WEBASSEMBLY namespace v8 { namespace internal { namespace compiler { #define __ tasm()-> // Adds X64 specific methods for decoding operands. class X64OperandConverter : public InstructionOperandConverter { public: X64OperandConverter(CodeGenerator* gen, Instruction* instr) : InstructionOperandConverter(gen, instr) {} Immediate InputImmediate(size_t index) { return ToImmediate(instr_->InputAt(index)); } Operand InputOperand(size_t index, int extra = 0) { return ToOperand(instr_->InputAt(index), extra); } Operand OutputOperand() { return ToOperand(instr_->Output()); } Immediate ToImmediate(InstructionOperand* operand) { Constant constant = ToConstant(operand); if (constant.type() == Constant::kFloat64) { DCHECK_EQ(0, constant.ToFloat64().AsUint64()); return Immediate(0); } if (RelocInfo::IsWasmReference(constant.rmode())) { return Immediate(constant.ToInt32(), constant.rmode()); } return Immediate(constant.ToInt32()); } Operand ToOperand(InstructionOperand* op, int extra = 0) { DCHECK(op->IsStackSlot() || op->IsFPStackSlot()); return SlotToOperand(AllocatedOperand::cast(op)->index(), extra); } Operand SlotToOperand(int slot_index, int extra = 0) { FrameOffset offset = frame_access_state()->GetFrameOffset(slot_index); return Operand(offset.from_stack_pointer() ? rsp : rbp, offset.offset() + extra); } static size_t NextOffset(size_t* offset) { size_t i = *offset; (*offset)++; return i; } static ScaleFactor ScaleFor(AddressingMode one, AddressingMode mode) { STATIC_ASSERT(0 == static_cast<int>(times_1)); STATIC_ASSERT(1 == static_cast<int>(times_2)); STATIC_ASSERT(2 == static_cast<int>(times_4)); STATIC_ASSERT(3 == static_cast<int>(times_8)); int scale = static_cast<int>(mode - one); DCHECK(scale >= 0 && scale < 4); return static_cast<ScaleFactor>(scale); } Operand MemoryOperand(size_t* offset) { AddressingMode mode = AddressingModeField::decode(instr_->opcode()); switch (mode) { case kMode_MR: { Register base = InputRegister(NextOffset(offset)); int32_t disp = 0; return Operand(base, disp); } case kMode_MRI: { Register base = InputRegister(NextOffset(offset)); int32_t disp = InputInt32(NextOffset(offset)); return Operand(base, disp); } case kMode_MR1: case kMode_MR2: case kMode_MR4: case kMode_MR8: { Register base = InputRegister(NextOffset(offset)); Register index = InputRegister(NextOffset(offset)); ScaleFactor scale = ScaleFor(kMode_MR1, mode); int32_t disp = 0; return Operand(base, index, scale, disp); } case kMode_MR1I: case kMode_MR2I: case kMode_MR4I: case kMode_MR8I: { Register base = InputRegister(NextOffset(offset)); Register index = InputRegister(NextOffset(offset)); ScaleFactor scale = ScaleFor(kMode_MR1I, mode); int32_t disp = InputInt32(NextOffset(offset)); return Operand(base, index, scale, disp); } case kMode_M1: { Register base = InputRegister(NextOffset(offset)); int32_t disp = 0; return Operand(base, disp); } case kMode_M2: UNREACHABLE(); // Should use kModeMR with more compact encoding instead case kMode_M4: case kMode_M8: { Register index = InputRegister(NextOffset(offset)); ScaleFactor scale = ScaleFor(kMode_M1, mode); int32_t disp = 0; return Operand(index, scale, disp); } case kMode_M1I: case kMode_M2I: case kMode_M4I: case kMode_M8I: { Register index = InputRegister(NextOffset(offset)); ScaleFactor scale = ScaleFor(kMode_M1I, mode); int32_t disp = InputInt32(NextOffset(offset)); return Operand(index, scale, disp); } case kMode_Root: { Register base = kRootRegister; int32_t disp = InputInt32(NextOffset(offset)); return Operand(base, disp); } case kMode_None: UNREACHABLE(); } UNREACHABLE(); } Operand MemoryOperand(size_t first_input = 0) { return MemoryOperand(&first_input); } }; namespace { bool HasAddressingMode(Instruction* instr) { return instr->addressing_mode() != kMode_None; } bool HasImmediateInput(Instruction* instr, size_t index) { return instr->InputAt(index)->IsImmediate(); } bool HasRegisterInput(Instruction* instr, size_t index) { return instr->InputAt(index)->IsRegister(); } class OutOfLineLoadFloat32NaN final : public OutOfLineCode { public: OutOfLineLoadFloat32NaN(CodeGenerator* gen, XMMRegister result) : OutOfLineCode(gen), result_(result) {} void Generate() final { __ Xorps(result_, result_); __ Divss(result_, result_); } private: XMMRegister const result_; }; class OutOfLineLoadFloat64NaN final : public OutOfLineCode { public: OutOfLineLoadFloat64NaN(CodeGenerator* gen, XMMRegister result) : OutOfLineCode(gen), result_(result) {} void Generate() final { __ Xorpd(result_, result_); __ Divsd(result_, result_); } private: XMMRegister const result_; }; class OutOfLineTruncateDoubleToI final : public OutOfLineCode { public: OutOfLineTruncateDoubleToI(CodeGenerator* gen, Register result, XMMRegister input, StubCallMode stub_mode, UnwindingInfoWriter* unwinding_info_writer) : OutOfLineCode(gen), result_(result), input_(input), #if V8_ENABLE_WEBASSEMBLY stub_mode_(stub_mode), #endif // V8_ENABLE_WEBASSEMBLY unwinding_info_writer_(unwinding_info_writer), isolate_(gen->isolate()), zone_(gen->zone()) { } void Generate() final { __ AllocateStackSpace(kDoubleSize); unwinding_info_writer_->MaybeIncreaseBaseOffsetAt(__ pc_offset(), kDoubleSize); __ Movsd(MemOperand(rsp, 0), input_); #if V8_ENABLE_WEBASSEMBLY if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) { // A direct call to a wasm runtime stub defined in this module. // Just encode the stub index. This will be patched when the code // is added to the native module and copied into wasm code space. __ near_call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL); #else // For balance. if (false) { #endif // V8_ENABLE_WEBASSEMBLY } else if (tasm()->options().inline_offheap_trampolines) { // With embedded builtins we do not need the isolate here. This allows // the call to be generated asynchronously. __ CallBuiltin(Builtin::kDoubleToI); } else { __ Call(BUILTIN_CODE(isolate_, DoubleToI), RelocInfo::CODE_TARGET); } __ movl(result_, MemOperand(rsp, 0)); __ addq(rsp, Immediate(kDoubleSize)); unwinding_info_writer_->MaybeIncreaseBaseOffsetAt(__ pc_offset(), -kDoubleSize); } private: Register const result_; XMMRegister const input_; #if V8_ENABLE_WEBASSEMBLY StubCallMode stub_mode_; #endif // V8_ENABLE_WEBASSEMBLY UnwindingInfoWriter* const unwinding_info_writer_; Isolate* isolate_; Zone* zone_; }; class OutOfLineRecordWrite final : public OutOfLineCode { public: OutOfLineRecordWrite(CodeGenerator* gen, Register object, Operand operand, Register value, Register scratch0, Register scratch1, RecordWriteMode mode, StubCallMode stub_mode) : OutOfLineCode(gen), object_(object), operand_(operand), value_(value), scratch0_(scratch0), scratch1_(scratch1), mode_(mode), #if V8_ENABLE_WEBASSEMBLY stub_mode_(stub_mode), #endif // V8_ENABLE_WEBASSEMBLY zone_(gen->zone()) { DCHECK(!AreAliased(object, scratch0, scratch1)); DCHECK(!AreAliased(value, scratch0, scratch1)); } void Generate() final { if (COMPRESS_POINTERS_BOOL) { __ DecompressTaggedPointer(value_, value_); } __ CheckPageFlag(value_, scratch0_, MemoryChunk::kPointersToHereAreInterestingMask, zero, exit()); __ leaq(scratch1_, operand_); RememberedSetAction const remembered_set_action = mode_ > RecordWriteMode::kValueIsMap ? RememberedSetAction::kEmit : RememberedSetAction::kOmit; SaveFPRegsMode const save_fp_mode = frame()->DidAllocateDoubleRegisters() ? SaveFPRegsMode::kSave : SaveFPRegsMode::kIgnore; if (mode_ == RecordWriteMode::kValueIsEphemeronKey) { __ CallEphemeronKeyBarrier(object_, scratch1_, save_fp_mode); #if V8_ENABLE_WEBASSEMBLY } else if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) { // A direct call to a wasm runtime stub defined in this module. // Just encode the stub index. This will be patched when the code // is added to the native module and copied into wasm code space. __ CallRecordWriteStubSaveRegisters(object_, scratch1_, remembered_set_action, save_fp_mode, StubCallMode::kCallWasmRuntimeStub); #endif // V8_ENABLE_WEBASSEMBLY } else { __ CallRecordWriteStubSaveRegisters(object_, scratch1_, remembered_set_action, save_fp_mode); } } private: Register const object_; Operand const operand_; Register const value_; Register const scratch0_; Register const scratch1_; RecordWriteMode const mode_; #if V8_ENABLE_WEBASSEMBLY StubCallMode const stub_mode_; #endif // V8_ENABLE_WEBASSEMBLY Zone* zone_; }; #ifdef V8_IS_TSAN class OutOfLineTSANRelaxedStore final : public OutOfLineCode { public: OutOfLineTSANRelaxedStore(CodeGenerator* gen, Operand operand, Register value, Register scratch0, StubCallMode stub_mode, int size) : OutOfLineCode(gen), operand_(operand), value_(value), scratch0_(scratch0), #if V8_ENABLE_WEBASSEMBLY stub_mode_(stub_mode), #endif // V8_ENABLE_WEBASSEMBLY size_(size), zone_(gen->zone()) { DCHECK(!AreAliased(value, scratch0)); } void Generate() final { const SaveFPRegsMode save_fp_mode = frame()->DidAllocateDoubleRegisters() ? SaveFPRegsMode::kSave : SaveFPRegsMode::kIgnore; __ leaq(scratch0_, operand_); #if V8_ENABLE_WEBASSEMBLY if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) { // A direct call to a wasm runtime stub defined in this module. // Just encode the stub index. This will be patched when the code // is added to the native module and copied into wasm code space. __ CallTSANRelaxedStoreStub(scratch0_, value_, save_fp_mode, size_, StubCallMode::kCallWasmRuntimeStub); return; } #endif // V8_ENABLE_WEBASSEMBLY __ CallTSANRelaxedStoreStub(scratch0_, value_, save_fp_mode, size_, StubCallMode::kCallBuiltinPointer); } private: Operand const operand_; Register const value_; Register const scratch0_; #if V8_ENABLE_WEBASSEMBLY StubCallMode const stub_mode_; #endif // V8_ENABLE_WEBASSEMBLY int size_; Zone* zone_; }; void EmitTSANStoreOOLIfNeeded(Zone* zone, CodeGenerator* codegen, TurboAssembler* tasm, Operand operand, Register value_reg, X64OperandConverter& i, StubCallMode mode, int size) { // The FOR_TESTING code doesn't initialize the root register. We can't call // the TSAN builtin since we need to load the external reference through the // root register. // TODO(solanes, v8:7790, v8:11600): See if we can support the FOR_TESTING // path. It is not crucial, but it would be nice to remove this if. if (codegen->code_kind() == CodeKind::FOR_TESTING) return; Register scratch0 = i.TempRegister(0); auto tsan_ool = zone->New<OutOfLineTSANRelaxedStore>( codegen, operand, value_reg, scratch0, mode, size); tasm->jmp(tsan_ool->entry()); tasm->bind(tsan_ool->exit()); } void EmitTSANStoreOOLIfNeeded(Zone* zone, CodeGenerator* codegen, TurboAssembler* tasm, Operand operand, Immediate value, X64OperandConverter& i, StubCallMode mode, int size) { // The FOR_TESTING code doesn't initialize the root register. We can't call // the TSAN builtin since we need to load the external reference through the // root register. // TODO(solanes, v8:7790, v8:11600): See if we can support the FOR_TESTING // path. It is not crucial, but it would be nice to remove this if. if (codegen->code_kind() == CodeKind::FOR_TESTING) return; Register value_reg = i.TempRegister(1); tasm->movq(value_reg, value); EmitTSANStoreOOLIfNeeded(zone, codegen, tasm, operand, value_reg, i, mode, size); } class OutOfLineTSANRelaxedLoad final : public OutOfLineCode { public: OutOfLineTSANRelaxedLoad(CodeGenerator* gen, Operand operand, Register scratch0, StubCallMode stub_mode, int size) : OutOfLineCode(gen), operand_(operand), scratch0_(scratch0), #if V8_ENABLE_WEBASSEMBLY stub_mode_(stub_mode), #endif // V8_ENABLE_WEBASSEMBLY size_(size), zone_(gen->zone()) { } void Generate() final { const SaveFPRegsMode save_fp_mode = frame()->DidAllocateDoubleRegisters() ? SaveFPRegsMode::kSave : SaveFPRegsMode::kIgnore; __ leaq(scratch0_, operand_); #if V8_ENABLE_WEBASSEMBLY if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) { // A direct call to a wasm runtime stub defined in this module. // Just encode the stub index. This will be patched when the code // is added to the native module and copied into wasm code space. __ CallTSANRelaxedLoadStub(scratch0_, save_fp_mode, size_, StubCallMode::kCallWasmRuntimeStub); return; } #endif // V8_ENABLE_WEBASSEMBLY __ CallTSANRelaxedLoadStub(scratch0_, save_fp_mode, size_, StubCallMode::kCallBuiltinPointer); } private: Operand const operand_; Register const scratch0_; #if V8_ENABLE_WEBASSEMBLY StubCallMode const stub_mode_; #endif // V8_ENABLE_WEBASSEMBLY int size_; Zone* zone_; }; void EmitTSANLoadOOLIfNeeded(Zone* zone, CodeGenerator* codegen, TurboAssembler* tasm, Operand operand, X64OperandConverter& i, StubCallMode mode, int size) { // The FOR_TESTING code doesn't initialize the root register. We can't call // the TSAN builtin since we need to load the external reference through the // root register. // TODO(solanes, v8:7790, v8:11600): See if we can support the FOR_TESTING // path. It is not crucial, but it would be nice to remove this if. if (codegen->code_kind() == CodeKind::FOR_TESTING) return; Register scratch0 = i.TempRegister(0); auto tsan_ool = zone->New<OutOfLineTSANRelaxedLoad>(codegen, operand, scratch0, mode, size); tasm->jmp(tsan_ool->entry()); tasm->bind(tsan_ool->exit()); } #else void EmitTSANStoreOOLIfNeeded(Zone* zone, CodeGenerator* codegen, TurboAssembler* tasm, Operand operand, Register value_reg, X64OperandConverter& i, StubCallMode mode, int size) {} void EmitTSANStoreOOLIfNeeded(Zone* zone, CodeGenerator* codegen, TurboAssembler* tasm, Operand operand, Immediate value, X64OperandConverter& i, StubCallMode mode, int size) {} void EmitTSANLoadOOLIfNeeded(Zone* zone, CodeGenerator* codegen, TurboAssembler* tasm, Operand operand, X64OperandConverter& i, StubCallMode mode, int size) {} #endif // V8_IS_TSAN #if V8_ENABLE_WEBASSEMBLY class WasmOutOfLineTrap : public OutOfLineCode { public: WasmOutOfLineTrap(CodeGenerator* gen, Instruction* instr) : OutOfLineCode(gen), gen_(gen), instr_(instr) {} void Generate() override { X64OperandConverter i(gen_, instr_); TrapId trap_id = static_cast<TrapId>(i.InputInt32(instr_->InputCount() - 1)); GenerateWithTrapId(trap_id); } protected: CodeGenerator* gen_; void GenerateWithTrapId(TrapId trap_id) { GenerateCallToTrap(trap_id); } private: void GenerateCallToTrap(TrapId trap_id) { if (!gen_->wasm_runtime_exception_support()) { // We cannot test calls to the runtime in cctest/test-run-wasm. // Therefore we emit a call to C here instead of a call to the runtime. __ PrepareCallCFunction(0); __ CallCFunction(ExternalReference::wasm_call_trap_callback_for_testing(), 0); __ LeaveFrame(StackFrame::WASM); auto call_descriptor = gen_->linkage()->GetIncomingDescriptor(); size_t pop_size = call_descriptor->ParameterSlotCount() * kSystemPointerSize; // Use rcx as a scratch register, we return anyways immediately. __ Ret(static_cast<int>(pop_size), rcx); } else { gen_->AssembleSourcePosition(instr_); // A direct call to a wasm runtime stub defined in this module. // Just encode the stub index. This will be patched when the code // is added to the native module and copied into wasm code space. __ near_call(static_cast<Address>(trap_id), RelocInfo::WASM_STUB_CALL); ReferenceMap* reference_map = gen_->zone()->New<ReferenceMap>(gen_->zone()); gen_->RecordSafepoint(reference_map); __ AssertUnreachable(AbortReason::kUnexpectedReturnFromWasmTrap); } } Instruction* instr_; }; class WasmProtectedInstructionTrap final : public WasmOutOfLineTrap { public: WasmProtectedInstructionTrap(CodeGenerator* gen, int pc, Instruction* instr) : WasmOutOfLineTrap(gen, instr), pc_(pc) {} void Generate() final { DCHECK(FLAG_wasm_bounds_checks && !FLAG_wasm_enforce_bounds_checks); gen_->AddProtectedInstructionLanding(pc_, __ pc_offset()); GenerateWithTrapId(TrapId::kTrapMemOutOfBounds); } private: int pc_; }; void EmitOOLTrapIfNeeded(Zone* zone, CodeGenerator* codegen, InstructionCode opcode, Instruction* instr, int pc) { const MemoryAccessMode access_mode = AccessModeField::decode(opcode); if (access_mode == kMemoryAccessProtected) { zone->New<WasmProtectedInstructionTrap>(codegen, pc, instr); } } #else void EmitOOLTrapIfNeeded(Zone* zone, CodeGenerator* codegen, InstructionCode opcode, Instruction* instr, int pc) { DCHECK_NE(kMemoryAccessProtected, AccessModeField::decode(opcode)); } #endif // V8_ENABLE_WEBASSEMBLY } // namespace #define ASSEMBLE_UNOP(asm_instr) \ do { \ if (instr->Output()->IsRegister()) { \ __ asm_instr(i.OutputRegister()); \ } else { \ __ asm_instr(i.OutputOperand()); \ } \ } while (false) #define ASSEMBLE_BINOP(asm_instr) \ do { \ if (HasAddressingMode(instr)) { \ size_t index = 1; \ Operand right = i.MemoryOperand(&index); \ __ asm_instr(i.InputRegister(0), right); \ } else { \ if (HasImmediateInput(instr, 1)) { \ if (HasRegisterInput(instr, 0)) { \ __ asm_instr(i.InputRegister(0), i.InputImmediate(1)); \ } else { \ __ asm_instr(i.InputOperand(0), i.InputImmediate(1)); \ } \ } else { \ if (HasRegisterInput(instr, 1)) { \ __ asm_instr(i.InputRegister(0), i.InputRegister(1)); \ } else { \ __ asm_instr(i.InputRegister(0), i.InputOperand(1)); \ } \ } \ } \ } while (false) #define ASSEMBLE_COMPARE(asm_instr) \ do { \ if (HasAddressingMode(instr)) { \ size_t index = 0; \ Operand left = i.MemoryOperand(&index); \ if (HasImmediateInput(instr, index)) { \ __ asm_instr(left, i.InputImmediate(index)); \ } else { \ __ asm_instr(left, i.InputRegister(index)); \ } \ } else { \ if (HasImmediateInput(instr, 1)) { \ if (HasRegisterInput(instr, 0)) { \ __ asm_instr(i.InputRegister(0), i.InputImmediate(1)); \ } else { \ __ asm_instr(i.InputOperand(0), i.InputImmediate(1)); \ } \ } else { \ if (HasRegisterInput(instr, 1)) { \ __ asm_instr(i.InputRegister(0), i.InputRegister(1)); \ } else { \ __ asm_instr(i.InputRegister(0), i.InputOperand(1)); \ } \ } \ } \ } while (false) #define ASSEMBLE_MULT(asm_instr) \ do { \ if (HasImmediateInput(instr, 1)) { \ if (HasRegisterInput(instr, 0)) { \ __ asm_instr(i.OutputRegister(), i.InputRegister(0), \ i.InputImmediate(1)); \ } else { \ __ asm_instr(i.OutputRegister(), i.InputOperand(0), \ i.InputImmediate(1)); \ } \ } else { \ if (HasRegisterInput(instr, 1)) { \ __ asm_instr(i.OutputRegister(), i.InputRegister(1)); \ } else { \ __ asm_instr(i.OutputRegister(), i.InputOperand(1)); \ } \ } \ } while (false) #define ASSEMBLE_SHIFT(asm_instr, width) \ do { \ if (HasImmediateInput(instr, 1)) { \ if (instr->Output()->IsRegister()) { \ __ asm_instr(i.OutputRegister(), Immediate(i.InputInt##width(1))); \ } else { \ __ asm_instr(i.OutputOperand(), Immediate(i.InputInt##width(1))); \ } \ } else { \ if (instr->Output()->IsRegister()) { \ __ asm_instr##_cl(i.OutputRegister()); \ } else { \ __ asm_instr##_cl(i.OutputOperand()); \ } \ } \ } while (false) #define ASSEMBLE_MOVX(asm_instr) \ do { \ if (HasAddressingMode(instr)) { \ __ asm_instr(i.OutputRegister(), i.MemoryOperand()); \ } else if (HasRegisterInput(instr, 0)) { \ __ asm_instr(i.OutputRegister(), i.InputRegister(0)); \ } else { \ __ asm_instr(i.OutputRegister(), i.InputOperand(0)); \ } \ } while (false) #define ASSEMBLE_SSE_BINOP(asm_instr) \ do { \ if (HasAddressingMode(instr)) { \ size_t index = 1; \ Operand right = i.MemoryOperand(&index); \ __ asm_instr(i.InputDoubleRegister(0), right); \ } else { \ if (instr->InputAt(1)->IsFPRegister()) { \ __ asm_instr(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); \ } else { \ __ asm_instr(i.InputDoubleRegister(0), i.InputOperand(1)); \ } \ } \ } while (false) #define ASSEMBLE_SSE_UNOP(asm_instr) \ do { \ if (instr->InputAt(0)->IsFPRegister()) { \ __ asm_instr(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); \ } else { \ __ asm_instr(i.OutputDoubleRegister(), i.InputOperand(0)); \ } \ } while (false) #define ASSEMBLE_AVX_BINOP(asm_instr) \ do { \ CpuFeatureScope avx_scope(tasm(), AVX); \ if (HasAddressingMode(instr)) { \ size_t index = 1; \ Operand right = i.MemoryOperand(&index); \ __ asm_instr(i.OutputDoubleRegister(), i.InputDoubleRegister(0), right); \ } else { \ if (instr->InputAt(1)->IsFPRegister()) { \ __ asm_instr(i.OutputDoubleRegister(), i.InputDoubleRegister(0), \ i.InputDoubleRegister(1)); \ } else { \ __ asm_instr(i.OutputDoubleRegister(), i.InputDoubleRegister(0), \ i.InputOperand(1)); \ } \ } \ } while (false) #define ASSEMBLE_IEEE754_BINOP(name) \ do { \ __ PrepareCallCFunction(2); \ __ CallCFunction(ExternalReference::ieee754_##name##_function(), 2); \ } while (false) #define ASSEMBLE_IEEE754_UNOP(name) \ do { \ __ PrepareCallCFunction(1); \ __ CallCFunction(ExternalReference::ieee754_##name##_function(), 1); \ } while (false) #define ASSEMBLE_ATOMIC_BINOP(bin_inst, mov_inst, cmpxchg_inst) \ do { \ Label binop; \ __ bind(&binop); \ __ mov_inst(rax, i.MemoryOperand(1)); \ __ movl(i.TempRegister(0), rax); \ __ bin_inst(i.TempRegister(0), i.InputRegister(0)); \ __ lock(); \ __ cmpxchg_inst(i.MemoryOperand(1), i.TempRegister(0)); \ __ j(not_equal, &binop); \ } while (false) #define ASSEMBLE_ATOMIC64_BINOP(bin_inst, mov_inst, cmpxchg_inst) \ do { \ Label binop; \ __ bind(&binop); \ __ mov_inst(rax, i.MemoryOperand(1)); \ __ movq(i.TempRegister(0), rax); \ __ bin_inst(i.TempRegister(0), i.InputRegister(0)); \ __ lock(); \ __ cmpxchg_inst(i.MemoryOperand(1), i.TempRegister(0)); \ __ j(not_equal, &binop); \ } while (false) // Handles both SSE and AVX codegen. For SSE we use DefineSameAsFirst, so the // dst and first src will be the same. For AVX we don't restrict it that way, so // we will omit unnecessary moves. #define ASSEMBLE_SIMD_BINOP(opcode) \ do { \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope avx_scope(tasm(), AVX); \ __ v##opcode(i.OutputSimd128Register(), i.InputSimd128Register(0), \ i.InputSimd128Register(1)); \ } else { \ DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); \ __ opcode(i.OutputSimd128Register(), i.InputSimd128Register(1)); \ } \ } while (false) #define ASSEMBLE_SIMD_INSTR(opcode, dst_operand, index) \ do { \ if (instr->InputAt(index)->IsSimd128Register()) { \ __ opcode(dst_operand, i.InputSimd128Register(index)); \ } else { \ __ opcode(dst_operand, i.InputOperand(index)); \ } \ } while (false) #define ASSEMBLE_SIMD_IMM_INSTR(opcode, dst_operand, index, imm) \ do { \ if (instr->InputAt(index)->IsSimd128Register()) { \ __ opcode(dst_operand, i.InputSimd128Register(index), imm); \ } else { \ __ opcode(dst_operand, i.InputOperand(index), imm); \ } \ } while (false) #define ASSEMBLE_SIMD_PUNPCK_SHUFFLE(opcode) \ do { \ XMMRegister dst = i.OutputSimd128Register(); \ byte input_index = instr->InputCount() == 2 ? 1 : 0; \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope avx_scope(tasm(), AVX); \ DCHECK(instr->InputAt(input_index)->IsSimd128Register()); \ __ v##opcode(dst, i.InputSimd128Register(0), \ i.InputSimd128Register(input_index)); \ } else { \ DCHECK_EQ(dst, i.InputSimd128Register(0)); \ ASSEMBLE_SIMD_INSTR(opcode, dst, input_index); \ } \ } while (false) #define ASSEMBLE_SIMD_IMM_SHUFFLE(opcode, imm) \ do { \ XMMRegister dst = i.OutputSimd128Register(); \ XMMRegister src = i.InputSimd128Register(0); \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope avx_scope(tasm(), AVX); \ DCHECK(instr->InputAt(1)->IsSimd128Register()); \ __ v##opcode(dst, src, i.InputSimd128Register(1), imm); \ } else { \ DCHECK_EQ(dst, src); \ if (instr->InputAt(1)->IsSimd128Register()) { \ __ opcode(dst, i.InputSimd128Register(1), imm); \ } else { \ __ opcode(dst, i.InputOperand(1), imm); \ } \ } \ } while (false) #define ASSEMBLE_SIMD_ALL_TRUE(opcode) \ do { \ Register dst = i.OutputRegister(); \ __ xorq(dst, dst); \ __ Pxor(kScratchDoubleReg, kScratchDoubleReg); \ __ opcode(kScratchDoubleReg, i.InputSimd128Register(0)); \ __ Ptest(kScratchDoubleReg, kScratchDoubleReg); \ __ setcc(equal, dst); \ } while (false) // This macro will directly emit the opcode if the shift is an immediate - the // shift value will be taken modulo 2^width. Otherwise, it will emit code to // perform the modulus operation. #define ASSEMBLE_SIMD_SHIFT(opcode, width) \ do { \ XMMRegister dst = i.OutputSimd128Register(); \ if (HasImmediateInput(instr, 1)) { \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope avx_scope(tasm(), AVX); \ __ v##opcode(dst, i.InputSimd128Register(0), \ byte{i.InputInt##width(1)}); \ } else { \ DCHECK_EQ(dst, i.InputSimd128Register(0)); \ __ opcode(dst, byte{i.InputInt##width(1)}); \ } \ } else { \ constexpr int mask = (1 << width) - 1; \ __ movq(kScratchRegister, i.InputRegister(1)); \ __ andq(kScratchRegister, Immediate(mask)); \ __ Movq(kScratchDoubleReg, kScratchRegister); \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope avx_scope(tasm(), AVX); \ __ v##opcode(dst, i.InputSimd128Register(0), kScratchDoubleReg); \ } else { \ DCHECK_EQ(dst, i.InputSimd128Register(0)); \ __ opcode(dst, kScratchDoubleReg); \ } \ } \ } while (false) #define ASSEMBLE_PINSR(ASM_INSTR) \ do { \ EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); \ XMMRegister dst = i.OutputSimd128Register(); \ XMMRegister src = i.InputSimd128Register(0); \ uint8_t laneidx = i.InputUint8(1); \ if (HasAddressingMode(instr)) { \ __ ASM_INSTR(dst, src, i.MemoryOperand(2), laneidx); \ break; \ } \ if (instr->InputAt(2)->IsFPRegister()) { \ __ Movq(kScratchRegister, i.InputDoubleRegister(2)); \ __ ASM_INSTR(dst, src, kScratchRegister, laneidx); \ } else if (instr->InputAt(2)->IsRegister()) { \ __ ASM_INSTR(dst, src, i.InputRegister(2), laneidx); \ } else { \ __ ASM_INSTR(dst, src, i.InputOperand(2), laneidx); \ } \ } while (false) void CodeGenerator::AssembleDeconstructFrame() { unwinding_info_writer_.MarkFrameDeconstructed(__ pc_offset()); __ movq(rsp, rbp); __ popq(rbp); } void CodeGenerator::AssemblePrepareTailCall() { if (frame_access_state()->has_frame()) { __ movq(rbp, MemOperand(rbp, 0)); } frame_access_state()->SetFrameAccessToSP(); } namespace { void AdjustStackPointerForTailCall(Instruction* instr, TurboAssembler* assembler, Linkage* linkage, OptimizedCompilationInfo* info, FrameAccessState* state, int new_slot_above_sp, bool allow_shrinkage = true) { int stack_slot_delta; if (instr->HasCallDescriptorFlag(CallDescriptor::kIsTailCallForTierUp)) { // For this special tail-call mode, the callee has the same arguments and // linkage as the caller, and arguments adapter frames must be preserved. // Thus we simply have reset the stack pointer register to its original // value before frame construction. // See also: AssembleConstructFrame. DCHECK(!info->is_osr()); DCHECK_EQ(linkage->GetIncomingDescriptor()->CalleeSavedRegisters(), 0); DCHECK_EQ(linkage->GetIncomingDescriptor()->CalleeSavedFPRegisters(), 0); DCHECK_EQ(state->frame()->GetReturnSlotCount(), 0); stack_slot_delta = (state->frame()->GetTotalFrameSlotCount() - kReturnAddressStackSlotCount) * -1; DCHECK_LE(stack_slot_delta, 0); } else { int current_sp_offset = state->GetSPToFPSlotCount() + StandardFrameConstants::kFixedSlotCountAboveFp; stack_slot_delta = new_slot_above_sp - current_sp_offset; } if (stack_slot_delta > 0) { assembler->AllocateStackSpace(stack_slot_delta * kSystemPointerSize); state->IncreaseSPDelta(stack_slot_delta); } else if (allow_shrinkage && stack_slot_delta < 0) { assembler->addq(rsp, Immediate(-stack_slot_delta * kSystemPointerSize)); state->IncreaseSPDelta(stack_slot_delta); } } void SetupSimdImmediateInRegister(TurboAssembler* assembler, uint32_t* imms, XMMRegister reg) { assembler->Move(reg, make_uint64(imms[3], imms[2]), make_uint64(imms[1], imms[0])); } } // namespace void CodeGenerator::AssembleTailCallBeforeGap(Instruction* instr, int first_unused_slot_offset) { CodeGenerator::PushTypeFlags flags(kImmediatePush | kScalarPush); ZoneVector<MoveOperands*> pushes(zone()); GetPushCompatibleMoves(instr, flags, &pushes); if (!pushes.empty() && (LocationOperand::cast(pushes.back()->destination()).index() + 1 == first_unused_slot_offset)) { DCHECK(!instr->HasCallDescriptorFlag(CallDescriptor::kIsTailCallForTierUp)); X64OperandConverter g(this, instr); for (auto move : pushes) { LocationOperand destination_location( LocationOperand::cast(move->destination())); InstructionOperand source(move->source()); AdjustStackPointerForTailCall(instr, tasm(), linkage(), info(), frame_access_state(), destination_location.index()); if (source.IsStackSlot()) { LocationOperand source_location(LocationOperand::cast(source)); __ Push(g.SlotToOperand(source_location.index())); } else if (source.IsRegister()) { LocationOperand source_location(LocationOperand::cast(source)); __ Push(source_location.GetRegister()); } else if (source.IsImmediate()) { __ Push(Immediate(ImmediateOperand::cast(source).inline_int32_value())); } else { // Pushes of non-scalar data types is not supported. UNIMPLEMENTED(); } frame_access_state()->IncreaseSPDelta(1); move->Eliminate(); } } AdjustStackPointerForTailCall(instr, tasm(), linkage(), info(), frame_access_state(), first_unused_slot_offset, false); } void CodeGenerator::AssembleTailCallAfterGap(Instruction* instr, int first_unused_slot_offset) { AdjustStackPointerForTailCall(instr, tasm(), linkage(), info(), frame_access_state(), first_unused_slot_offset); } // Check that {kJavaScriptCallCodeStartRegister} is correct. void CodeGenerator::AssembleCodeStartRegisterCheck() { __ ComputeCodeStartAddress(rbx); __ cmpq(rbx, kJavaScriptCallCodeStartRegister); __ Assert(equal, AbortReason::kWrongFunctionCodeStart); } // Check if the code object is marked for deoptimization. If it is, then it // jumps to the CompileLazyDeoptimizedCode builtin. In order to do this we need // to: // 1. read from memory the word that contains that bit, which can be found in // the flags in the referenced {CodeDataContainer} object; // 2. test kMarkedForDeoptimizationBit in those flags; and // 3. if it is not zero then it jumps to the builtin. void CodeGenerator::BailoutIfDeoptimized() { int offset = Code::kCodeDataContainerOffset - Code::kHeaderSize; __ LoadTaggedPointerField(rbx, Operand(kJavaScriptCallCodeStartRegister, offset)); __ testl(FieldOperand(rbx, CodeDataContainer::kKindSpecificFlagsOffset), Immediate(1 << Code::kMarkedForDeoptimizationBit)); __ Jump(BUILTIN_CODE(isolate(), CompileLazyDeoptimizedCode), RelocInfo::CODE_TARGET, not_zero); } // Assembles an instruction after register allocation, producing machine code. CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction( Instruction* instr) { X64OperandConverter i(this, instr); InstructionCode opcode = instr->opcode(); ArchOpcode arch_opcode = ArchOpcodeField::decode(opcode); switch (arch_opcode) { case kArchCallCodeObject: { if (HasImmediateInput(instr, 0)) { Handle<Code> code = i.InputCode(0); __ Call(code, RelocInfo::CODE_TARGET); } else { Register reg = i.InputRegister(0); DCHECK_IMPLIES( instr->HasCallDescriptorFlag(CallDescriptor::kFixedTargetRegister), reg == kJavaScriptCallCodeStartRegister); __ LoadCodeObjectEntry(reg, reg); __ call(reg); } RecordCallPosition(instr); frame_access_state()->ClearSPDelta(); break; } case kArchCallBuiltinPointer: { DCHECK(!HasImmediateInput(instr, 0)); Register builtin_index = i.InputRegister(0); __ CallBuiltinByIndex(builtin_index); RecordCallPosition(instr); frame_access_state()->ClearSPDelta(); break; } #if V8_ENABLE_WEBASSEMBLY case kArchCallWasmFunction: { if (HasImmediateInput(instr, 0)) { Constant constant = i.ToConstant(instr->InputAt(0)); Address wasm_code = static_cast<Address>(constant.ToInt64()); if (DetermineStubCallMode() == StubCallMode::kCallWasmRuntimeStub) { __ near_call(wasm_code, constant.rmode()); } else { __ Call(wasm_code, constant.rmode()); } } else { __ call(i.InputRegister(0)); } RecordCallPosition(instr); frame_access_state()->ClearSPDelta(); break; } case kArchTailCallWasm: { if (HasImmediateInput(instr, 0)) { Constant constant = i.ToConstant(instr->InputAt(0)); Address wasm_code = static_cast<Address>(constant.ToInt64()); if (DetermineStubCallMode() == StubCallMode::kCallWasmRuntimeStub) { __ near_jmp(wasm_code, constant.rmode()); } else { __ Move(kScratchRegister, wasm_code, constant.rmode()); __ jmp(kScratchRegister); } } else { __ jmp(i.InputRegister(0)); } unwinding_info_writer_.MarkBlockWillExit(); frame_access_state()->ClearSPDelta(); frame_access_state()->SetFrameAccessToDefault(); break; } #endif // V8_ENABLE_WEBASSEMBLY case kArchTailCallCodeObject: { if (HasImmediateInput(instr, 0)) { Handle<Code> code = i.InputCode(0); __ Jump(code, RelocInfo::CODE_TARGET); } else { Register reg = i.InputRegister(0); DCHECK_IMPLIES( instr->HasCallDescriptorFlag(CallDescriptor::kFixedTargetRegister), reg == kJavaScriptCallCodeStartRegister); __ LoadCodeObjectEntry(reg, reg); __ jmp(reg); } unwinding_info_writer_.MarkBlockWillExit(); frame_access_state()->ClearSPDelta(); frame_access_state()->SetFrameAccessToDefault(); break; } case kArchTailCallAddress: { CHECK(!HasImmediateInput(instr, 0)); Register reg = i.InputRegister(0); DCHECK_IMPLIES( instr->HasCallDescriptorFlag(CallDescriptor::kFixedTargetRegister), reg == kJavaScriptCallCodeStartRegister); __ jmp(reg); unwinding_info_writer_.MarkBlockWillExit(); frame_access_state()->ClearSPDelta(); frame_access_state()->SetFrameAccessToDefault(); break; } case kArchCallJSFunction: { Register func = i.InputRegister(0); if (FLAG_debug_code) { // Check the function's context matches the context argument. __ cmp_tagged(rsi, FieldOperand(func, JSFunction::kContextOffset)); __ Assert(equal, AbortReason::kWrongFunctionContext); } static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); __ LoadTaggedPointerField(rcx, FieldOperand(func, JSFunction::kCodeOffset)); __ CallCodeTObject(rcx); frame_access_state()->ClearSPDelta(); RecordCallPosition(instr); break; } case kArchPrepareCallCFunction: { // Frame alignment requires using FP-relative frame addressing. frame_access_state()->SetFrameAccessToFP(); int const num_parameters = MiscField::decode(instr->opcode()); __ PrepareCallCFunction(num_parameters); break; } case kArchSaveCallerRegisters: { fp_mode_ = static_cast<SaveFPRegsMode>(MiscField::decode(instr->opcode())); DCHECK(fp_mode_ == SaveFPRegsMode::kIgnore || fp_mode_ == SaveFPRegsMode::kSave); // kReturnRegister0 should have been saved before entering the stub. int bytes = __ PushCallerSaved(fp_mode_, kReturnRegister0); DCHECK(IsAligned(bytes, kSystemPointerSize)); DCHECK_EQ(0, frame_access_state()->sp_delta()); frame_access_state()->IncreaseSPDelta(bytes / kSystemPointerSize); DCHECK(!caller_registers_saved_); caller_registers_saved_ = true; break; } case kArchRestoreCallerRegisters: { DCHECK(fp_mode_ == static_cast<SaveFPRegsMode>(MiscField::decode(instr->opcode()))); DCHECK(fp_mode_ == SaveFPRegsMode::kIgnore || fp_mode_ == SaveFPRegsMode::kSave); // Don't overwrite the returned value. int bytes = __ PopCallerSaved(fp_mode_, kReturnRegister0); frame_access_state()->IncreaseSPDelta(-(bytes / kSystemPointerSize)); DCHECK_EQ(0, frame_access_state()->sp_delta()); DCHECK(caller_registers_saved_); caller_registers_saved_ = false; break; } case kArchPrepareTailCall: AssemblePrepareTailCall(); break; case kArchCallCFunction: { int const num_parameters = MiscField::decode(instr->opcode()); Label return_location; #if V8_ENABLE_WEBASSEMBLY if (linkage()->GetIncomingDescriptor()->IsWasmCapiFunction()) { // Put the return address in a stack slot. __ leaq(kScratchRegister, Operand(&return_location, 0)); __ movq(MemOperand(rbp, WasmExitFrameConstants::kCallingPCOffset), kScratchRegister); } #endif // V8_ENABLE_WEBASSEMBLY if (HasImmediateInput(instr, 0)) { ExternalReference ref = i.InputExternalReference(0); __ CallCFunction(ref, num_parameters); } else { Register func = i.InputRegister(0); __ CallCFunction(func, num_parameters); } __ bind(&return_location); #if V8_ENABLE_WEBASSEMBLY if (linkage()->GetIncomingDescriptor()->IsWasmCapiFunction()) { RecordSafepoint(instr->reference_map()); } #endif // V8_ENABLE_WEBASSEMBLY frame_access_state()->SetFrameAccessToDefault(); // Ideally, we should decrement SP delta to match the change of stack // pointer in CallCFunction. However, for certain architectures (e.g. // ARM), there may be more strict alignment requirement, causing old SP // to be saved on the stack. In those cases, we can not calculate the SP // delta statically. frame_access_state()->ClearSPDelta(); if (caller_registers_saved_) { // Need to re-sync SP delta introduced in kArchSaveCallerRegisters. // Here, we assume the sequence to be: // kArchSaveCallerRegisters; // kArchCallCFunction; // kArchRestoreCallerRegisters; int bytes = __ RequiredStackSizeForCallerSaved(fp_mode_, kReturnRegister0); frame_access_state()->IncreaseSPDelta(bytes / kSystemPointerSize); } // TODO(turbofan): Do we need an lfence here? break; } case kArchJmp: AssembleArchJump(i.InputRpo(0)); break; case kArchBinarySearchSwitch: AssembleArchBinarySearchSwitch(instr); break; case kArchTableSwitch: AssembleArchTableSwitch(instr); break; case kArchComment: __ RecordComment(reinterpret_cast<const char*>(i.InputInt64(0))); break; case kArchAbortCSAAssert: DCHECK(i.InputRegister(0) == rdx); { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(tasm(), StackFrame::NONE); __ Call(isolate()->builtins()->code_handle(Builtin::kAbortCSAAssert), RelocInfo::CODE_TARGET); } __ int3(); unwinding_info_writer_.MarkBlockWillExit(); break; case kArchDebugBreak: __ DebugBreak(); break; case kArchThrowTerminator: unwinding_info_writer_.MarkBlockWillExit(); break; case kArchNop: // don't emit code for nops. break; case kArchDeoptimize: { DeoptimizationExit* exit = BuildTranslation(instr, -1, 0, 0, OutputFrameStateCombine::Ignore()); __ jmp(exit->label()); break; } case kArchRet: AssembleReturn(instr->InputAt(0)); break; case kArchFramePointer: __ movq(i.OutputRegister(), rbp); break; case kArchParentFramePointer: if (frame_access_state()->has_frame()) { __ movq(i.OutputRegister(), Operand(rbp, 0)); } else { __ movq(i.OutputRegister(), rbp); } break; case kArchStackPointerGreaterThan: { // Potentially apply an offset to the current stack pointer before the // comparison to consider the size difference of an optimized frame versus // the contained unoptimized frames. Register lhs_register = rsp; uint32_t offset; if (ShouldApplyOffsetToStackCheck(instr, &offset)) { lhs_register = kScratchRegister; __ leaq(lhs_register, Operand(rsp, static_cast<int32_t>(offset) * -1)); } constexpr size_t kValueIndex = 0; if (HasAddressingMode(instr)) { __ cmpq(lhs_register, i.MemoryOperand(kValueIndex)); } else { __ cmpq(lhs_register, i.InputRegister(kValueIndex)); } break; } case kArchStackCheckOffset: __ Move(i.OutputRegister(), Smi::FromInt(GetStackCheckOffset())); break; case kArchTruncateDoubleToI: { auto result = i.OutputRegister(); auto input = i.InputDoubleRegister(0); auto ool = zone()->New<OutOfLineTruncateDoubleToI>( this, result, input, DetermineStubCallMode(), &unwinding_info_writer_); // We use Cvttsd2siq instead of Cvttsd2si due to performance reasons. The // use of Cvttsd2siq requires the movl below to avoid sign extension. __ Cvttsd2siq(result, input); __ cmpq(result, Immediate(1)); __ j(overflow, ool->entry()); __ bind(ool->exit()); __ movl(result, result); break; } case kArchStoreWithWriteBarrier: { RecordWriteMode mode = static_cast<RecordWriteMode>(MiscField::decode(instr->opcode())); Register object = i.InputRegister(0); size_t index = 0; Operand operand = i.MemoryOperand(&index); Register value = i.InputRegister(index); Register scratch0 = i.TempRegister(0); Register scratch1 = i.TempRegister(1); auto ool = zone()->New<OutOfLineRecordWrite>(this, object, operand, value, scratch0, scratch1, mode, DetermineStubCallMode()); __ StoreTaggedField(operand, value); if (mode > RecordWriteMode::kValueIsPointer) { __ JumpIfSmi(value, ool->exit()); } __ CheckPageFlag(object, scratch0, MemoryChunk::kPointersFromHereAreInterestingMask, not_zero, ool->entry()); __ bind(ool->exit()); EmitTSANStoreOOLIfNeeded(zone(), this, tasm(), operand, value, i, DetermineStubCallMode(), kTaggedSize); break; } case kX64MFence: __ mfence(); break; case kX64LFence: __ lfence(); break; case kArchStackSlot: { FrameOffset offset = frame_access_state()->GetFrameOffset(i.InputInt32(0)); Register base = offset.from_stack_pointer() ? rsp : rbp; __ leaq(i.OutputRegister(), Operand(base, offset.offset())); break; } case kIeee754Float64Acos: ASSEMBLE_IEEE754_UNOP(acos); break; case kIeee754Float64Acosh: ASSEMBLE_IEEE754_UNOP(acosh); break; case kIeee754Float64Asin: ASSEMBLE_IEEE754_UNOP(asin); break; case kIeee754Float64Asinh: ASSEMBLE_IEEE754_UNOP(asinh); break; case kIeee754Float64Atan: ASSEMBLE_IEEE754_UNOP(atan); break; case kIeee754Float64Atanh: ASSEMBLE_IEEE754_UNOP(atanh); break; case kIeee754Float64Atan2: ASSEMBLE_IEEE754_BINOP(atan2); break; case kIeee754Float64Cbrt: ASSEMBLE_IEEE754_UNOP(cbrt); break; case kIeee754Float64Cos: ASSEMBLE_IEEE754_UNOP(cos); break; case kIeee754Float64Cosh: ASSEMBLE_IEEE754_UNOP(cosh); break; case kIeee754Float64Exp: ASSEMBLE_IEEE754_UNOP(exp); break; case kIeee754Float64Expm1: ASSEMBLE_IEEE754_UNOP(expm1); break; case kIeee754Float64Log: ASSEMBLE_IEEE754_UNOP(log); break; case kIeee754Float64Log1p: ASSEMBLE_IEEE754_UNOP(log1p); break; case kIeee754Float64Log2: ASSEMBLE_IEEE754_UNOP(log2); break; case kIeee754Float64Log10: ASSEMBLE_IEEE754_UNOP(log10); break; case kIeee754Float64Pow: ASSEMBLE_IEEE754_BINOP(pow); break; case kIeee754Float64Sin: ASSEMBLE_IEEE754_UNOP(sin); break; case kIeee754Float64Sinh: ASSEMBLE_IEEE754_UNOP(sinh); break; case kIeee754Float64Tan: ASSEMBLE_IEEE754_UNOP(tan); break; case kIeee754Float64Tanh: ASSEMBLE_IEEE754_UNOP(tanh); break; case kX64Add32: ASSEMBLE_BINOP(addl); break; case kX64Add: ASSEMBLE_BINOP(addq); break; case kX64Sub32: ASSEMBLE_BINOP(subl); break; case kX64Sub: ASSEMBLE_BINOP(subq); break; case kX64And32: ASSEMBLE_BINOP(andl); break; case kX64And: ASSEMBLE_BINOP(andq); break; case kX64Cmp8: ASSEMBLE_COMPARE(cmpb); break; case kX64Cmp16: ASSEMBLE_COMPARE(cmpw); break; case kX64Cmp32: ASSEMBLE_COMPARE(cmpl); break; case kX64Cmp: ASSEMBLE_COMPARE(cmpq); break; case kX64Test8: ASSEMBLE_COMPARE(testb); break; case kX64Test16: ASSEMBLE_COMPARE(testw); break; case kX64Test32: ASSEMBLE_COMPARE(testl); break; case kX64Test: ASSEMBLE_COMPARE(testq); break; case kX64Imul32: ASSEMBLE_MULT(imull); break; case kX64Imul: ASSEMBLE_MULT(imulq); break; case kX64ImulHigh32: if (HasRegisterInput(instr, 1)) { __ imull(i.InputRegister(1)); } else { __ imull(i.InputOperand(1)); } break; case kX64UmulHigh32: if (HasRegisterInput(instr, 1)) { __ mull(i.InputRegister(1)); } else { __ mull(i.InputOperand(1)); } break; case kX64Idiv32: __ cdq(); __ idivl(i.InputRegister(1)); break; case kX64Idiv: __ cqo(); __ idivq(i.InputRegister(1)); break; case kX64Udiv32: __ xorl(rdx, rdx); __ divl(i.InputRegister(1)); break; case kX64Udiv: __ xorq(rdx, rdx); __ divq(i.InputRegister(1)); break; case kX64Not: ASSEMBLE_UNOP(notq); break; case kX64Not32: ASSEMBLE_UNOP(notl); break; case kX64Neg: ASSEMBLE_UNOP(negq); break; case kX64Neg32: ASSEMBLE_UNOP(negl); break; case kX64Or32: ASSEMBLE_BINOP(orl); break; case kX64Or: ASSEMBLE_BINOP(orq); break; case kX64Xor32: ASSEMBLE_BINOP(xorl); break; case kX64Xor: ASSEMBLE_BINOP(xorq); break; case kX64Shl32: ASSEMBLE_SHIFT(shll, 5); break; case kX64Shl: ASSEMBLE_SHIFT(shlq, 6); break; case kX64Shr32: ASSEMBLE_SHIFT(shrl, 5); break; case kX64Shr: ASSEMBLE_SHIFT(shrq, 6); break; case kX64Sar32: ASSEMBLE_SHIFT(sarl, 5); break; case kX64Sar: ASSEMBLE_SHIFT(sarq, 6); break; case kX64Rol32: ASSEMBLE_SHIFT(roll, 5); break; case kX64Rol: ASSEMBLE_SHIFT(rolq, 6); break; case kX64Ror32: ASSEMBLE_SHIFT(rorl, 5); break; case kX64Ror: ASSEMBLE_SHIFT(rorq, 6); break; case kX64Lzcnt: if (HasRegisterInput(instr, 0)) { __ Lzcntq(i.OutputRegister(), i.InputRegister(0)); } else { __ Lzcntq(i.OutputRegister(), i.InputOperand(0)); } break; case kX64Lzcnt32: if (HasRegisterInput(instr, 0)) { __ Lzcntl(i.OutputRegister(), i.InputRegister(0)); } else { __ Lzcntl(i.OutputRegister(), i.InputOperand(0)); } break; case kX64Tzcnt: if (HasRegisterInput(instr, 0)) { __ Tzcntq(i.OutputRegister(), i.InputRegister(0)); } else { __ Tzcntq(i.OutputRegister(), i.InputOperand(0)); } break; case kX64Tzcnt32: if (HasRegisterInput(instr, 0)) { __ Tzcntl(i.OutputRegister(), i.InputRegister(0)); } else { __ Tzcntl(i.OutputRegister(), i.InputOperand(0)); } break; case kX64Popcnt: if (HasRegisterInput(instr, 0)) { __ Popcntq(i.OutputRegister(), i.InputRegister(0)); } else { __ Popcntq(i.OutputRegister(), i.InputOperand(0)); } break; case kX64Popcnt32: if (HasRegisterInput(instr, 0)) { __ Popcntl(i.OutputRegister(), i.InputRegister(0)); } else { __ Popcntl(i.OutputRegister(), i.InputOperand(0)); } break; case kX64Bswap: __ bswapq(i.OutputRegister()); break; case kX64Bswap32: __ bswapl(i.OutputRegister()); break; case kSSEFloat32Cmp: ASSEMBLE_SSE_BINOP(Ucomiss); break; case kSSEFloat32Add: ASSEMBLE_SSE_BINOP(addss); break; case kSSEFloat32Sub: ASSEMBLE_SSE_BINOP(subss); break; case kSSEFloat32Mul: ASSEMBLE_SSE_BINOP(mulss); break; case kSSEFloat32Div: ASSEMBLE_SSE_BINOP(divss); // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulss depending on the result. __ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; case kSSEFloat32Abs: { // TODO(bmeurer): Use RIP relative 128-bit constants. XMMRegister tmp = i.ToDoubleRegister(instr->TempAt(0)); __ Pcmpeqd(tmp, tmp); __ Psrlq(tmp, byte{33}); __ Andps(i.OutputDoubleRegister(), tmp); break; } case kSSEFloat32Neg: { // TODO(bmeurer): Use RIP relative 128-bit constants. XMMRegister tmp = i.ToDoubleRegister(instr->TempAt(0)); __ Pcmpeqd(tmp, tmp); __ Psllq(tmp, byte{31}); __ Xorps(i.OutputDoubleRegister(), tmp); break; } case kSSEFloat32Sqrt: ASSEMBLE_SSE_UNOP(sqrtss); break; case kSSEFloat32ToFloat64: ASSEMBLE_SSE_UNOP(Cvtss2sd); break; case kSSEFloat32Round: { CpuFeatureScope sse_scope(tasm(), SSE4_1); RoundingMode const mode = static_cast<RoundingMode>(MiscField::decode(instr->opcode())); __ Roundss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), mode); break; } case kSSEFloat32ToInt32: if (instr->InputAt(0)->IsFPRegister()) { __ Cvttss2si(i.OutputRegister(), i.InputDoubleRegister(0)); } else { __ Cvttss2si(i.OutputRegister(), i.InputOperand(0)); } break; case kSSEFloat32ToUint32: { if (instr->InputAt(0)->IsFPRegister()) { __ Cvttss2siq(i.OutputRegister(), i.InputDoubleRegister(0)); } else { __ Cvttss2siq(i.OutputRegister(), i.InputOperand(0)); } break; } case kSSEFloat64Cmp: ASSEMBLE_SSE_BINOP(Ucomisd); break; case kSSEFloat64Add: ASSEMBLE_SSE_BINOP(addsd); break; case kSSEFloat64Sub: ASSEMBLE_SSE_BINOP(subsd); break; case kSSEFloat64Mul: ASSEMBLE_SSE_BINOP(mulsd); break; case kSSEFloat64Div: ASSEMBLE_SSE_BINOP(divsd); // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulsd depending on the result. __ Movapd(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; case kSSEFloat64Mod: { __ AllocateStackSpace(kDoubleSize); unwinding_info_writer_.MaybeIncreaseBaseOffsetAt(__ pc_offset(), kDoubleSize); // Move values to st(0) and st(1). __ Movsd(Operand(rsp, 0), i.InputDoubleRegister(1)); __ fld_d(Operand(rsp, 0)); __ Movsd(Operand(rsp, 0), i.InputDoubleRegister(0)); __ fld_d(Operand(rsp, 0)); // Loop while fprem isn't done. Label mod_loop; __ bind(&mod_loop); // This instructions traps on all kinds inputs, but we are assuming the // floating point control word is set to ignore them all. __ fprem(); // The following 2 instruction implicitly use rax. __ fnstsw_ax(); if (CpuFeatures::IsSupported(SAHF)) { CpuFeatureScope sahf_scope(tasm(), SAHF); __ sahf(); } else { __ shrl(rax, Immediate(8)); __ andl(rax, Immediate(0xFF)); __ pushq(rax); unwinding_info_writer_.MaybeIncreaseBaseOffsetAt(__ pc_offset(), kSystemPointerSize); __ popfq(); unwinding_info_writer_.MaybeIncreaseBaseOffsetAt(__ pc_offset(), -kSystemPointerSize); } __ j(parity_even, &mod_loop); // Move output to stack and clean up. __ fstp(1); __ fstp_d(Operand(rsp, 0)); __ Movsd(i.OutputDoubleRegister(), Operand(rsp, 0)); __ addq(rsp, Immediate(kDoubleSize)); unwinding_info_writer_.MaybeIncreaseBaseOffsetAt(__ pc_offset(), -kDoubleSize); break; } case kSSEFloat32Max: { Label compare_swap, done_compare; if (instr->InputAt(1)->IsFPRegister()) { __ Ucomiss(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ Ucomiss(i.InputDoubleRegister(0), i.InputOperand(1)); } auto ool = zone()->New<OutOfLineLoadFloat32NaN>(this, i.OutputDoubleRegister()); __ j(parity_even, ool->entry()); __ j(above, &done_compare, Label::kNear); __ j(below, &compare_swap, Label::kNear); __ Movmskps(kScratchRegister, i.InputDoubleRegister(0)); __ testl(kScratchRegister, Immediate(1)); __ j(zero, &done_compare, Label::kNear); __ bind(&compare_swap); if (instr->InputAt(1)->IsFPRegister()) { __ Movss(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ Movss(i.InputDoubleRegister(0), i.InputOperand(1)); } __ bind(&done_compare); __ bind(ool->exit()); break; } case kSSEFloat32Min: { Label compare_swap, done_compare; if (instr->InputAt(1)->IsFPRegister()) { __ Ucomiss(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ Ucomiss(i.InputDoubleRegister(0), i.InputOperand(1)); } auto ool = zone()->New<OutOfLineLoadFloat32NaN>(this, i.OutputDoubleRegister()); __ j(parity_even, ool->entry()); __ j(below, &done_compare, Label::kNear); __ j(above, &compare_swap, Label::kNear); if (instr->InputAt(1)->IsFPRegister()) { __ Movmskps(kScratchRegister, i.InputDoubleRegister(1)); } else { __ Movss(kScratchDoubleReg, i.InputOperand(1)); __ Movmskps(kScratchRegister, kScratchDoubleReg); } __ testl(kScratchRegister, Immediate(1)); __ j(zero, &done_compare, Label::kNear); __ bind(&compare_swap); if (instr->InputAt(1)->IsFPRegister()) { __ Movss(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ Movss(i.InputDoubleRegister(0), i.InputOperand(1)); } __ bind(&done_compare); __ bind(ool->exit()); break; } case kSSEFloat64Max: { Label compare_swap, done_compare; if (instr->InputAt(1)->IsFPRegister()) { __ Ucomisd(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ Ucomisd(i.InputDoubleRegister(0), i.InputOperand(1)); } auto ool = zone()->New<OutOfLineLoadFloat64NaN>(this, i.OutputDoubleRegister()); __ j(parity_even, ool->entry()); __ j(above, &done_compare, Label::kNear); __ j(below, &compare_swap, Label::kNear); __ Movmskpd(kScratchRegister, i.InputDoubleRegister(0)); __ testl(kScratchRegister, Immediate(1)); __ j(zero, &done_compare, Label::kNear); __ bind(&compare_swap); if (instr->InputAt(1)->IsFPRegister()) { __ Movsd(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ Movsd(i.InputDoubleRegister(0), i.InputOperand(1)); } __ bind(&done_compare); __ bind(ool->exit()); break; } case kSSEFloat64Min: { Label compare_swap, done_compare; if (instr->InputAt(1)->IsFPRegister()) { __ Ucomisd(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ Ucomisd(i.InputDoubleRegister(0), i.InputOperand(1)); } auto ool = zone()->New<OutOfLineLoadFloat64NaN>(this, i.OutputDoubleRegister()); __ j(parity_even, ool->entry()); __ j(below, &done_compare, Label::kNear); __ j(above, &compare_swap, Label::kNear); if (instr->InputAt(1)->IsFPRegister()) { __ Movmskpd(kScratchRegister, i.InputDoubleRegister(1)); } else { __ Movsd(kScratchDoubleReg, i.InputOperand(1)); __ Movmskpd(kScratchRegister, kScratchDoubleReg); } __ testl(kScratchRegister, Immediate(1)); __ j(zero, &done_compare, Label::kNear); __ bind(&compare_swap); if (instr->InputAt(1)->IsFPRegister()) { __ Movsd(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ Movsd(i.InputDoubleRegister(0), i.InputOperand(1)); } __ bind(&done_compare); __ bind(ool->exit()); break; } case kX64F64x2Abs: case kSSEFloat64Abs: { __ Abspd(i.OutputDoubleRegister()); break; } case kX64F64x2Neg: case kSSEFloat64Neg: { __ Negpd(i.OutputDoubleRegister()); break; } case kSSEFloat64Sqrt: ASSEMBLE_SSE_UNOP(Sqrtsd); break; case kSSEFloat64Round: { CpuFeatureScope sse_scope(tasm(), SSE4_1); RoundingMode const mode = static_cast<RoundingMode>(MiscField::decode(instr->opcode())); __ Roundsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), mode); break; } case kSSEFloat64ToFloat32: ASSEMBLE_SSE_UNOP(Cvtsd2ss); break; case kSSEFloat64ToInt32: if (instr->InputAt(0)->IsFPRegister()) { __ Cvttsd2si(i.OutputRegister(), i.InputDoubleRegister(0)); } else { __ Cvttsd2si(i.OutputRegister(), i.InputOperand(0)); } break; case kSSEFloat64ToUint32: { if (instr->InputAt(0)->IsFPRegister()) { __ Cvttsd2siq(i.OutputRegister(), i.InputDoubleRegister(0)); } else { __ Cvttsd2siq(i.OutputRegister(), i.InputOperand(0)); } if (MiscField::decode(instr->opcode())) { __ AssertZeroExtended(i.OutputRegister()); } break; } case kSSEFloat32ToInt64: if (instr->InputAt(0)->IsFPRegister()) { __ Cvttss2siq(i.OutputRegister(), i.InputDoubleRegister(0)); } else { __ Cvttss2siq(i.OutputRegister(), i.InputOperand(0)); } if (instr->OutputCount() > 1) { __ Move(i.OutputRegister(1), 1); Label done; Label fail; __ Move(kScratchDoubleReg, static_cast<float>(INT64_MIN)); if (instr->InputAt(0)->IsFPRegister()) { __ Ucomiss(kScratchDoubleReg, i.InputDoubleRegister(0)); } else { __ Ucomiss(kScratchDoubleReg, i.InputOperand(0)); } // If the input is NaN, then the conversion fails. __ j(parity_even, &fail, Label::kNear); // If the input is INT64_MIN, then the conversion succeeds. __ j(equal, &done, Label::kNear); __ cmpq(i.OutputRegister(0), Immediate(1)); // If the conversion results in INT64_MIN, but the input was not // INT64_MIN, then the conversion fails. __ j(no_overflow, &done, Label::kNear); __ bind(&fail); __ Move(i.OutputRegister(1), 0); __ bind(&done); } break; case kSSEFloat64ToInt64: if (instr->InputAt(0)->IsFPRegister()) { __ Cvttsd2siq(i.OutputRegister(0), i.InputDoubleRegister(0)); } else { __ Cvttsd2siq(i.OutputRegister(0), i.InputOperand(0)); } if (instr->OutputCount() > 1) { __ Move(i.OutputRegister(1), 1); Label done; Label fail; __ Move(kScratchDoubleReg, static_cast<double>(INT64_MIN)); if (instr->InputAt(0)->IsFPRegister()) { __ Ucomisd(kScratchDoubleReg, i.InputDoubleRegister(0)); } else { __ Ucomisd(kScratchDoubleReg, i.InputOperand(0)); } // If the input is NaN, then the conversion fails. __ j(parity_even, &fail, Label::kNear); // If the input is INT64_MIN, then the conversion succeeds. __ j(equal, &done, Label::kNear); __ cmpq(i.OutputRegister(0), Immediate(1)); // If the conversion results in INT64_MIN, but the input was not // INT64_MIN, then the conversion fails. __ j(no_overflow, &done, Label::kNear); __ bind(&fail); __ Move(i.OutputRegister(1), 0); __ bind(&done); } break; case kSSEFloat32ToUint64: { Label fail; if (instr->OutputCount() > 1) __ Move(i.OutputRegister(1), 0); if (instr->InputAt(0)->IsFPRegister()) { __ Cvttss2uiq(i.OutputRegister(), i.InputDoubleRegister(0), &fail); } else { __ Cvttss2uiq(i.OutputRegister(), i.InputOperand(0), &fail); } if (instr->OutputCount() > 1) __ Move(i.OutputRegister(1), 1); __ bind(&fail); break; } case kSSEFloat64ToUint64: { Label fail; if (instr->OutputCount() > 1) __ Move(i.OutputRegister(1), 0); if (instr->InputAt(0)->IsFPRegister()) { __ Cvttsd2uiq(i.OutputRegister(), i.InputDoubleRegister(0), &fail); } else { __ Cvttsd2uiq(i.OutputRegister(), i.InputOperand(0), &fail); } if (instr->OutputCount() > 1) __ Move(i.OutputRegister(1), 1); __ bind(&fail); break; } case kSSEInt32ToFloat64: if (HasRegisterInput(instr, 0)) { __ Cvtlsi2sd(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ Cvtlsi2sd(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kSSEInt32ToFloat32: if (HasRegisterInput(instr, 0)) { __ Cvtlsi2ss(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ Cvtlsi2ss(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kSSEInt64ToFloat32: if (HasRegisterInput(instr, 0)) { __ Cvtqsi2ss(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ Cvtqsi2ss(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kSSEInt64ToFloat64: if (HasRegisterInput(instr, 0)) { __ Cvtqsi2sd(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ Cvtqsi2sd(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kSSEUint64ToFloat32: if (HasRegisterInput(instr, 0)) { __ Cvtqui2ss(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ Cvtqui2ss(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kSSEUint64ToFloat64: if (HasRegisterInput(instr, 0)) { __ Cvtqui2sd(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ Cvtqui2sd(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kSSEUint32ToFloat64: if (HasRegisterInput(instr, 0)) { __ Cvtlui2sd(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ Cvtlui2sd(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kSSEUint32ToFloat32: if (HasRegisterInput(instr, 0)) { __ Cvtlui2ss(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ Cvtlui2ss(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kSSEFloat64ExtractLowWord32: if (instr->InputAt(0)->IsFPStackSlot()) { __ movl(i.OutputRegister(), i.InputOperand(0)); } else { __ Movd(i.OutputRegister(), i.InputDoubleRegister(0)); } break; case kSSEFloat64ExtractHighWord32: if (instr->InputAt(0)->IsFPStackSlot()) { __ movl(i.OutputRegister(), i.InputOperand(0, kDoubleSize / 2)); } else { __ Pextrd(i.OutputRegister(), i.InputDoubleRegister(0), 1); } break; case kSSEFloat64InsertLowWord32: if (HasRegisterInput(instr, 1)) { __ Pinsrd(i.OutputDoubleRegister(), i.InputRegister(1), 0); } else { __ Pinsrd(i.OutputDoubleRegister(), i.InputOperand(1), 0); } break; case kSSEFloat64InsertHighWord32: if (HasRegisterInput(instr, 1)) { __ Pinsrd(i.OutputDoubleRegister(), i.InputRegister(1), 1); } else { __ Pinsrd(i.OutputDoubleRegister(), i.InputOperand(1), 1); } break; case kSSEFloat64LoadLowWord32: if (HasRegisterInput(instr, 0)) { __ Movd(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ Movd(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kAVXFloat32Cmp: { CpuFeatureScope avx_scope(tasm(), AVX); if (instr->InputAt(1)->IsFPRegister()) { __ vucomiss(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ vucomiss(i.InputDoubleRegister(0), i.InputOperand(1)); } break; } case kAVXFloat32Add: ASSEMBLE_AVX_BINOP(vaddss); break; case kAVXFloat32Sub: ASSEMBLE_AVX_BINOP(vsubss); break; case kAVXFloat32Mul: ASSEMBLE_AVX_BINOP(vmulss); break; case kAVXFloat32Div: ASSEMBLE_AVX_BINOP(vdivss); // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulss depending on the result. __ Movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; case kAVXFloat64Cmp: { CpuFeatureScope avx_scope(tasm(), AVX); if (instr->InputAt(1)->IsFPRegister()) { __ vucomisd(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ vucomisd(i.InputDoubleRegister(0), i.InputOperand(1)); } break; } case kAVXFloat64Add: ASSEMBLE_AVX_BINOP(vaddsd); break; case kAVXFloat64Sub: ASSEMBLE_AVX_BINOP(vsubsd); break; case kAVXFloat64Mul: ASSEMBLE_AVX_BINOP(vmulsd); break; case kAVXFloat64Div: ASSEMBLE_AVX_BINOP(vdivsd); // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulsd depending on the result. __ Movapd(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; case kAVXFloat32Abs: { // TODO(bmeurer): Use RIP relative 128-bit constants. CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister tmp = i.ToDoubleRegister(instr->TempAt(0)); __ vpcmpeqd(tmp, tmp, tmp); __ vpsrlq(tmp, tmp, 33); if (instr->InputAt(0)->IsFPRegister()) { __ vandps(i.OutputDoubleRegister(), tmp, i.InputDoubleRegister(0)); } else { __ vandps(i.OutputDoubleRegister(), tmp, i.InputOperand(0)); } break; } case kAVXFloat32Neg: { // TODO(bmeurer): Use RIP relative 128-bit constants. CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister tmp = i.ToDoubleRegister(instr->TempAt(0)); __ vpcmpeqd(tmp, tmp, tmp); __ vpsllq(tmp, tmp, 31); if (instr->InputAt(0)->IsFPRegister()) { __ vxorps(i.OutputDoubleRegister(), tmp, i.InputDoubleRegister(0)); } else { __ vxorps(i.OutputDoubleRegister(), tmp, i.InputOperand(0)); } break; } case kAVXFloat64Abs: { // TODO(bmeurer): Use RIP relative 128-bit constants. CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister tmp = i.ToDoubleRegister(instr->TempAt(0)); __ vpcmpeqd(tmp, tmp, tmp); __ vpsrlq(tmp, tmp, 1); if (instr->InputAt(0)->IsFPRegister()) { __ vandpd(i.OutputDoubleRegister(), tmp, i.InputDoubleRegister(0)); } else { __ vandpd(i.OutputDoubleRegister(), tmp, i.InputOperand(0)); } break; } case kAVXFloat64Neg: { // TODO(bmeurer): Use RIP relative 128-bit constants. CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister tmp = i.ToDoubleRegister(instr->TempAt(0)); __ vpcmpeqd(tmp, tmp, tmp); __ vpsllq(tmp, tmp, 63); if (instr->InputAt(0)->IsFPRegister()) { __ vxorpd(i.OutputDoubleRegister(), tmp, i.InputDoubleRegister(0)); } else { __ vxorpd(i.OutputDoubleRegister(), tmp, i.InputOperand(0)); } break; } case kSSEFloat64SilenceNaN: __ Xorpd(kScratchDoubleReg, kScratchDoubleReg); __ Subsd(i.InputDoubleRegister(0), kScratchDoubleReg); break; case kX64Movsxbl: EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); ASSEMBLE_MOVX(movsxbl); __ AssertZeroExtended(i.OutputRegister()); break; case kX64Movzxbl: EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); ASSEMBLE_MOVX(movzxbl); __ AssertZeroExtended(i.OutputRegister()); break; case kX64Movsxbq: EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); ASSEMBLE_MOVX(movsxbq); break; case kX64Movzxbq: EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); ASSEMBLE_MOVX(movzxbq); __ AssertZeroExtended(i.OutputRegister()); break; case kX64Movb: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); size_t index = 0; Operand operand = i.MemoryOperand(&index); if (HasImmediateInput(instr, index)) { Immediate value(Immediate(i.InputInt8(index))); __ movb(operand, value); EmitTSANStoreOOLIfNeeded(zone(), this, tasm(), operand, value, i, DetermineStubCallMode(), kInt8Size); } else { Register value(i.InputRegister(index)); __ movb(operand, value); EmitTSANStoreOOLIfNeeded(zone(), this, tasm(), operand, value, i, DetermineStubCallMode(), kInt8Size); } break; } case kX64Movsxwl: EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); ASSEMBLE_MOVX(movsxwl); __ AssertZeroExtended(i.OutputRegister()); break; case kX64Movzxwl: EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); ASSEMBLE_MOVX(movzxwl); __ AssertZeroExtended(i.OutputRegister()); break; case kX64Movsxwq: EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); ASSEMBLE_MOVX(movsxwq); break; case kX64Movzxwq: EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); ASSEMBLE_MOVX(movzxwq); __ AssertZeroExtended(i.OutputRegister()); break; case kX64Movw: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); size_t index = 0; Operand operand = i.MemoryOperand(&index); if (HasImmediateInput(instr, index)) { Immediate value(Immediate(i.InputInt16(index))); __ movw(operand, value); EmitTSANStoreOOLIfNeeded(zone(), this, tasm(), operand, value, i, DetermineStubCallMode(), kInt16Size); } else { Register value(i.InputRegister(index)); __ movw(operand, value); EmitTSANStoreOOLIfNeeded(zone(), this, tasm(), operand, value, i, DetermineStubCallMode(), kInt16Size); } break; } case kX64Movl: EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); if (instr->HasOutput()) { if (HasAddressingMode(instr)) { Operand address(i.MemoryOperand()); __ movl(i.OutputRegister(), address); EmitTSANLoadOOLIfNeeded(zone(), this, tasm(), address, i, DetermineStubCallMode(), kInt32Size); } else { if (HasRegisterInput(instr, 0)) { __ movl(i.OutputRegister(), i.InputRegister(0)); } else { __ movl(i.OutputRegister(), i.InputOperand(0)); } } __ AssertZeroExtended(i.OutputRegister()); } else { size_t index = 0; Operand operand = i.MemoryOperand(&index); if (HasImmediateInput(instr, index)) { Immediate value(i.InputImmediate(index)); __ movl(operand, value); EmitTSANStoreOOLIfNeeded(zone(), this, tasm(), operand, value, i, DetermineStubCallMode(), kInt32Size); } else { Register value(i.InputRegister(index)); __ movl(operand, value); EmitTSANStoreOOLIfNeeded(zone(), this, tasm(), operand, value, i, DetermineStubCallMode(), kInt32Size); } } break; case kX64Movsxlq: EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); ASSEMBLE_MOVX(movsxlq); break; case kX64MovqDecompressTaggedSigned: { CHECK(instr->HasOutput()); Operand address(i.MemoryOperand()); __ DecompressTaggedSigned(i.OutputRegister(), address); EmitTSANLoadOOLIfNeeded(zone(), this, tasm(), address, i, DetermineStubCallMode(), kTaggedSize); break; } case kX64MovqDecompressTaggedPointer: { CHECK(instr->HasOutput()); Operand address(i.MemoryOperand()); __ DecompressTaggedPointer(i.OutputRegister(), address); EmitTSANLoadOOLIfNeeded(zone(), this, tasm(), address, i, DetermineStubCallMode(), kTaggedSize); break; } case kX64MovqDecompressAnyTagged: { CHECK(instr->HasOutput()); Operand address(i.MemoryOperand()); __ DecompressAnyTagged(i.OutputRegister(), address); EmitTSANLoadOOLIfNeeded(zone(), this, tasm(), address, i, DetermineStubCallMode(), kTaggedSize); break; } case kX64MovqCompressTagged: { CHECK(!instr->HasOutput()); size_t index = 0; Operand operand = i.MemoryOperand(&index); if (HasImmediateInput(instr, index)) { Immediate value(i.InputImmediate(index)); __ StoreTaggedField(operand, value); EmitTSANStoreOOLIfNeeded(zone(), this, tasm(), operand, value, i, DetermineStubCallMode(), kTaggedSize); } else { Register value(i.InputRegister(index)); __ StoreTaggedField(operand, value); EmitTSANStoreOOLIfNeeded(zone(), this, tasm(), operand, value, i, DetermineStubCallMode(), kTaggedSize); } break; } case kX64Movq: EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); if (instr->HasOutput()) { Operand address(i.MemoryOperand()); __ movq(i.OutputRegister(), address); EmitTSANLoadOOLIfNeeded(zone(), this, tasm(), address, i, DetermineStubCallMode(), kInt64Size); } else { size_t index = 0; Operand operand = i.MemoryOperand(&index); if (HasImmediateInput(instr, index)) { Immediate value(i.InputImmediate(index)); __ movq(operand, value); EmitTSANStoreOOLIfNeeded(zone(), this, tasm(), operand, value, i, DetermineStubCallMode(), kInt64Size); } else { Register value(i.InputRegister(index)); __ movq(operand, value); EmitTSANStoreOOLIfNeeded(zone(), this, tasm(), operand, value, i, DetermineStubCallMode(), kInt64Size); } } break; case kX64Movss: EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); if (instr->HasOutput()) { __ Movss(i.OutputDoubleRegister(), i.MemoryOperand()); } else { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ Movss(operand, i.InputDoubleRegister(index)); } break; case kX64Movsd: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); if (instr->HasOutput()) { __ Movsd(i.OutputDoubleRegister(), i.MemoryOperand()); } else { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ Movsd(operand, i.InputDoubleRegister(index)); } break; } case kX64Movdqu: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); if (instr->HasOutput()) { __ Movdqu(i.OutputSimd128Register(), i.MemoryOperand()); } else { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ Movdqu(operand, i.InputSimd128Register(index)); } break; } case kX64BitcastFI: if (instr->InputAt(0)->IsFPStackSlot()) { __ movl(i.OutputRegister(), i.InputOperand(0)); } else { __ Movd(i.OutputRegister(), i.InputDoubleRegister(0)); } break; case kX64BitcastDL: if (instr->InputAt(0)->IsFPStackSlot()) { __ movq(i.OutputRegister(), i.InputOperand(0)); } else { __ Movq(i.OutputRegister(), i.InputDoubleRegister(0)); } break; case kX64BitcastIF: if (HasRegisterInput(instr, 0)) { __ Movd(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ Movss(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kX64BitcastLD: if (HasRegisterInput(instr, 0)) { __ Movq(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ Movsd(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kX64Lea32: { AddressingMode mode = AddressingModeField::decode(instr->opcode()); // Shorten "leal" to "addl", "subl" or "shll" if the register allocation // and addressing mode just happens to work out. The "addl"/"subl" forms // in these cases are faster based on measurements. if (i.InputRegister(0) == i.OutputRegister()) { if (mode == kMode_MRI) { int32_t constant_summand = i.InputInt32(1); DCHECK_NE(0, constant_summand); if (constant_summand > 0) { __ addl(i.OutputRegister(), Immediate(constant_summand)); } else { __ subl(i.OutputRegister(), Immediate(base::NegateWithWraparound(constant_summand))); } } else if (mode == kMode_MR1) { if (i.InputRegister(1) == i.OutputRegister()) { __ shll(i.OutputRegister(), Immediate(1)); } else { __ addl(i.OutputRegister(), i.InputRegister(1)); } } else if (mode == kMode_M2) { __ shll(i.OutputRegister(), Immediate(1)); } else if (mode == kMode_M4) { __ shll(i.OutputRegister(), Immediate(2)); } else if (mode == kMode_M8) { __ shll(i.OutputRegister(), Immediate(3)); } else { __ leal(i.OutputRegister(), i.MemoryOperand()); } } else if (mode == kMode_MR1 && i.InputRegister(1) == i.OutputRegister()) { __ addl(i.OutputRegister(), i.InputRegister(0)); } else { __ leal(i.OutputRegister(), i.MemoryOperand()); } __ AssertZeroExtended(i.OutputRegister()); break; } case kX64Lea: { AddressingMode mode = AddressingModeField::decode(instr->opcode()); // Shorten "leaq" to "addq", "subq" or "shlq" if the register allocation // and addressing mode just happens to work out. The "addq"/"subq" forms // in these cases are faster based on measurements. if (i.InputRegister(0) == i.OutputRegister()) { if (mode == kMode_MRI) { int32_t constant_summand = i.InputInt32(1); if (constant_summand > 0) { __ addq(i.OutputRegister(), Immediate(constant_summand)); } else if (constant_summand < 0) { __ subq(i.OutputRegister(), Immediate(-constant_summand)); } } else if (mode == kMode_MR1) { if (i.InputRegister(1) == i.OutputRegister()) { __ shlq(i.OutputRegister(), Immediate(1)); } else { __ addq(i.OutputRegister(), i.InputRegister(1)); } } else if (mode == kMode_M2) { __ shlq(i.OutputRegister(), Immediate(1)); } else if (mode == kMode_M4) { __ shlq(i.OutputRegister(), Immediate(2)); } else if (mode == kMode_M8) { __ shlq(i.OutputRegister(), Immediate(3)); } else { __ leaq(i.OutputRegister(), i.MemoryOperand()); } } else if (mode == kMode_MR1 && i.InputRegister(1) == i.OutputRegister()) { __ addq(i.OutputRegister(), i.InputRegister(0)); } else { __ leaq(i.OutputRegister(), i.MemoryOperand()); } break; } case kX64Dec32: __ decl(i.OutputRegister()); break; case kX64Inc32: __ incl(i.OutputRegister()); break; case kX64Push: { int stack_decrement = i.InputInt32(0); int slots = stack_decrement / kSystemPointerSize; // Whenever codegen uses pushq, we need to check if stack_decrement // contains any extra padding and adjust the stack before the pushq. if (HasImmediateInput(instr, 1)) { __ AllocateStackSpace(stack_decrement - kSystemPointerSize); __ pushq(i.InputImmediate(1)); } else if (HasAddressingMode(instr)) { __ AllocateStackSpace(stack_decrement - kSystemPointerSize); size_t index = 1; Operand operand = i.MemoryOperand(&index); __ pushq(operand); } else { InstructionOperand* input = instr->InputAt(1); if (input->IsRegister()) { __ AllocateStackSpace(stack_decrement - kSystemPointerSize); __ pushq(i.InputRegister(1)); } else if (input->IsFloatRegister() || input->IsDoubleRegister()) { DCHECK_GE(stack_decrement, kSystemPointerSize); __ AllocateStackSpace(stack_decrement); __ Movsd(Operand(rsp, 0), i.InputDoubleRegister(1)); } else if (input->IsSimd128Register()) { DCHECK_GE(stack_decrement, kSimd128Size); __ AllocateStackSpace(stack_decrement); // TODO(bbudge) Use Movaps when slots are aligned. __ Movups(Operand(rsp, 0), i.InputSimd128Register(1)); } else if (input->IsStackSlot() || input->IsFloatStackSlot() || input->IsDoubleStackSlot()) { __ AllocateStackSpace(stack_decrement - kSystemPointerSize); __ pushq(i.InputOperand(1)); } else { DCHECK(input->IsSimd128StackSlot()); DCHECK_GE(stack_decrement, kSimd128Size); // TODO(bbudge) Use Movaps when slots are aligned. __ Movups(kScratchDoubleReg, i.InputOperand(1)); __ AllocateStackSpace(stack_decrement); __ Movups(Operand(rsp, 0), kScratchDoubleReg); } } frame_access_state()->IncreaseSPDelta(slots); unwinding_info_writer_.MaybeIncreaseBaseOffsetAt(__ pc_offset(), stack_decrement); break; } case kX64Poke: { int slot = MiscField::decode(instr->opcode()); if (HasImmediateInput(instr, 0)) { __ movq(Operand(rsp, slot * kSystemPointerSize), i.InputImmediate(0)); } else if (instr->InputAt(0)->IsFPRegister()) { LocationOperand* op = LocationOperand::cast(instr->InputAt(0)); if (op->representation() == MachineRepresentation::kFloat64) { __ Movsd(Operand(rsp, slot * kSystemPointerSize), i.InputDoubleRegister(0)); } else { DCHECK_EQ(MachineRepresentation::kFloat32, op->representation()); __ Movss(Operand(rsp, slot * kSystemPointerSize), i.InputFloatRegister(0)); } } else { __ movq(Operand(rsp, slot * kSystemPointerSize), i.InputRegister(0)); } break; } case kX64Peek: { int reverse_slot = i.InputInt32(0); int offset = FrameSlotToFPOffset(frame()->GetTotalFrameSlotCount() - reverse_slot); if (instr->OutputAt(0)->IsFPRegister()) { LocationOperand* op = LocationOperand::cast(instr->OutputAt(0)); if (op->representation() == MachineRepresentation::kFloat64) { __ Movsd(i.OutputDoubleRegister(), Operand(rbp, offset)); } else if (op->representation() == MachineRepresentation::kFloat32) { __ Movss(i.OutputFloatRegister(), Operand(rbp, offset)); } else { DCHECK_EQ(MachineRepresentation::kSimd128, op->representation()); __ Movdqu(i.OutputSimd128Register(), Operand(rbp, offset)); } } else { __ movq(i.OutputRegister(), Operand(rbp, offset)); } break; } case kX64F64x2Splat: { XMMRegister dst = i.OutputSimd128Register(); if (instr->InputAt(0)->IsFPRegister()) { __ Movddup(dst, i.InputDoubleRegister(0)); } else { __ Movddup(dst, i.InputOperand(0)); } break; } case kX64F64x2ExtractLane: { __ F64x2ExtractLane(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputUint8(1)); break; } case kX64F64x2ReplaceLane: { __ F64x2ReplaceLane(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputDoubleRegister(2), i.InputInt8(1)); break; } case kX64F64x2Sqrt: { __ Sqrtpd(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64F64x2Add: { ASSEMBLE_SIMD_BINOP(addpd); break; } case kX64F64x2Sub: { ASSEMBLE_SIMD_BINOP(subpd); break; } case kX64F64x2Mul: { ASSEMBLE_SIMD_BINOP(mulpd); break; } case kX64F64x2Div: { ASSEMBLE_SIMD_BINOP(divpd); break; } case kX64F64x2Min: { // Avoids a move in no-AVX case if dst = src0. DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ F64x2Min(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kX64F64x2Max: { // Avoids a move in no-AVX case if dst = src0. DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ F64x2Max(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kX64F64x2Eq: { ASSEMBLE_SIMD_BINOP(cmpeqpd); break; } case kX64F64x2Ne: { ASSEMBLE_SIMD_BINOP(cmpneqpd); break; } case kX64F64x2Lt: { ASSEMBLE_SIMD_BINOP(cmpltpd); break; } case kX64F64x2Le: { ASSEMBLE_SIMD_BINOP(cmplepd); break; } case kX64F64x2Qfma: { if (CpuFeatures::IsSupported(FMA3)) { CpuFeatureScope fma3_scope(tasm(), FMA3); __ vfmadd231pd(i.OutputSimd128Register(), i.InputSimd128Register(1), i.InputSimd128Register(2)); } else { __ Movapd(kScratchDoubleReg, i.InputSimd128Register(2)); __ Mulpd(kScratchDoubleReg, i.InputSimd128Register(1)); __ Addpd(i.OutputSimd128Register(), kScratchDoubleReg); } break; } case kX64F64x2Qfms: { if (CpuFeatures::IsSupported(FMA3)) { CpuFeatureScope fma3_scope(tasm(), FMA3); __ vfnmadd231pd(i.OutputSimd128Register(), i.InputSimd128Register(1), i.InputSimd128Register(2)); } else { __ Movapd(kScratchDoubleReg, i.InputSimd128Register(2)); __ Mulpd(kScratchDoubleReg, i.InputSimd128Register(1)); __ Subpd(i.OutputSimd128Register(), kScratchDoubleReg); } break; } case kX64F64x2ConvertLowI32x4S: { __ Cvtdq2pd(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64F64x2ConvertLowI32x4U: { __ F64x2ConvertLowI32x4U(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64F64x2PromoteLowF32x4: { __ Cvtps2pd(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64F32x4DemoteF64x2Zero: { __ Cvtpd2ps(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I32x4TruncSatF64x2SZero: { __ I32x4TruncSatF64x2SZero(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I32x4TruncSatF64x2UZero: { __ I32x4TruncSatF64x2UZero(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64F32x4Splat: { __ F32x4Splat(i.OutputSimd128Register(), i.InputDoubleRegister(0)); break; } case kX64F32x4ExtractLane: { __ F32x4ExtractLane(i.OutputFloatRegister(), i.InputSimd128Register(0), i.InputUint8(1)); break; } case kX64F32x4ReplaceLane: { // The insertps instruction uses imm8[5:4] to indicate the lane // that needs to be replaced. byte select = i.InputInt8(1) << 4 & 0x30; if (instr->InputAt(2)->IsFPRegister()) { __ Insertps(i.OutputSimd128Register(), i.InputDoubleRegister(2), select); } else { __ Insertps(i.OutputSimd128Register(), i.InputOperand(2), select); } break; } case kX64F32x4SConvertI32x4: { __ Cvtdq2ps(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64F32x4UConvertI32x4: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); DCHECK_NE(i.OutputSimd128Register(), kScratchDoubleReg); XMMRegister dst = i.OutputSimd128Register(); __ Pxor(kScratchDoubleReg, kScratchDoubleReg); // zeros __ Pblendw(kScratchDoubleReg, dst, uint8_t{0x55}); // get lo 16 bits __ Psubd(dst, kScratchDoubleReg); // get hi 16 bits __ Cvtdq2ps(kScratchDoubleReg, kScratchDoubleReg); // convert lo exactly __ Psrld(dst, byte{1}); // divide by 2 to get in unsigned range __ Cvtdq2ps(dst, dst); // convert hi exactly __ Addps(dst, dst); // double hi, exactly __ Addps(dst, kScratchDoubleReg); // add hi and lo, may round. break; } case kX64F32x4Abs: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); if (dst == src) { __ Pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ Psrld(kScratchDoubleReg, byte{1}); __ Andps(dst, kScratchDoubleReg); } else { __ Pcmpeqd(dst, dst); __ Psrld(dst, byte{1}); __ Andps(dst, src); } break; } case kX64F32x4Neg: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); if (dst == src) { __ Pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ Pslld(kScratchDoubleReg, byte{31}); __ Xorps(dst, kScratchDoubleReg); } else { __ Pcmpeqd(dst, dst); __ Pslld(dst, byte{31}); __ Xorps(dst, src); } break; } case kX64F32x4Sqrt: { __ Sqrtps(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64F32x4RecipApprox: { __ Rcpps(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64F32x4RecipSqrtApprox: { __ Rsqrtps(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64F32x4Add: { ASSEMBLE_SIMD_BINOP(addps); break; } case kX64F32x4Sub: { ASSEMBLE_SIMD_BINOP(subps); break; } case kX64F32x4Mul: { ASSEMBLE_SIMD_BINOP(mulps); break; } case kX64F32x4Div: { ASSEMBLE_SIMD_BINOP(divps); break; } case kX64F32x4Min: { XMMRegister src1 = i.InputSimd128Register(1), dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); // The minps instruction doesn't propagate NaNs and +0's in its first // operand. Perform minps in both orders, merge the resuls, and adjust. __ Movaps(kScratchDoubleReg, src1); __ Minps(kScratchDoubleReg, dst); __ Minps(dst, src1); // propagate -0's and NaNs, which may be non-canonical. __ Orps(kScratchDoubleReg, dst); // Canonicalize NaNs by quieting and clearing the payload. __ Cmpunordps(dst, kScratchDoubleReg); __ Orps(kScratchDoubleReg, dst); __ Psrld(dst, byte{10}); __ Andnps(dst, kScratchDoubleReg); break; } case kX64F32x4Max: { XMMRegister src1 = i.InputSimd128Register(1), dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); // The maxps instruction doesn't propagate NaNs and +0's in its first // operand. Perform maxps in both orders, merge the resuls, and adjust. __ Movaps(kScratchDoubleReg, src1); __ Maxps(kScratchDoubleReg, dst); __ Maxps(dst, src1); // Find discrepancies. __ Xorps(dst, kScratchDoubleReg); // Propagate NaNs, which may be non-canonical. __ Orps(kScratchDoubleReg, dst); // Propagate sign discrepancy and (subtle) quiet NaNs. __ Subps(kScratchDoubleReg, dst); // Canonicalize NaNs by clearing the payload. Sign is non-deterministic. __ Cmpunordps(dst, kScratchDoubleReg); __ Psrld(dst, byte{10}); __ Andnps(dst, kScratchDoubleReg); break; } case kX64F32x4Eq: { ASSEMBLE_SIMD_BINOP(cmpeqps); break; } case kX64F32x4Ne: { ASSEMBLE_SIMD_BINOP(cmpneqps); break; } case kX64F32x4Lt: { ASSEMBLE_SIMD_BINOP(cmpltps); break; } case kX64F32x4Le: { ASSEMBLE_SIMD_BINOP(cmpleps); break; } case kX64F32x4Qfma: { if (CpuFeatures::IsSupported(FMA3)) { CpuFeatureScope fma3_scope(tasm(), FMA3); __ vfmadd231ps(i.OutputSimd128Register(), i.InputSimd128Register(1), i.InputSimd128Register(2)); } else { __ Movaps(kScratchDoubleReg, i.InputSimd128Register(2)); __ Mulps(kScratchDoubleReg, i.InputSimd128Register(1)); __ Addps(i.OutputSimd128Register(), kScratchDoubleReg); } break; } case kX64F32x4Qfms: { if (CpuFeatures::IsSupported(FMA3)) { CpuFeatureScope fma3_scope(tasm(), FMA3); __ vfnmadd231ps(i.OutputSimd128Register(), i.InputSimd128Register(1), i.InputSimd128Register(2)); } else { __ Movaps(kScratchDoubleReg, i.InputSimd128Register(2)); __ Mulps(kScratchDoubleReg, i.InputSimd128Register(1)); __ Subps(i.OutputSimd128Register(), kScratchDoubleReg); } break; } case kX64F32x4Pmin: { ASSEMBLE_SIMD_BINOP(minps); break; } case kX64F32x4Pmax: { ASSEMBLE_SIMD_BINOP(maxps); break; } case kX64F32x4Round: { RoundingMode const mode = static_cast<RoundingMode>(MiscField::decode(instr->opcode())); __ Roundps(i.OutputSimd128Register(), i.InputSimd128Register(0), mode); break; } case kX64F64x2Round: { RoundingMode const mode = static_cast<RoundingMode>(MiscField::decode(instr->opcode())); __ Roundpd(i.OutputSimd128Register(), i.InputSimd128Register(0), mode); break; } case kX64F64x2Pmin: { ASSEMBLE_SIMD_BINOP(minpd); break; } case kX64F64x2Pmax: { ASSEMBLE_SIMD_BINOP(maxpd); break; } case kX64I64x2Splat: { XMMRegister dst = i.OutputSimd128Register(); if (HasRegisterInput(instr, 0)) { __ Movq(dst, i.InputRegister(0)); __ Movddup(dst, dst); } else { __ Movddup(dst, i.InputOperand(0)); } break; } case kX64I64x2ExtractLane: { __ Pextrq(i.OutputRegister(), i.InputSimd128Register(0), i.InputInt8(1)); break; } case kX64I64x2Abs: { __ I64x2Abs(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kX64I64x2Neg: { __ I64x2Neg(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kX64I64x2BitMask: { __ Movmskpd(i.OutputRegister(), i.InputSimd128Register(0)); break; } case kX64I64x2Shl: { // Take shift value modulo 2^6. ASSEMBLE_SIMD_SHIFT(psllq, 6); break; } case kX64I64x2ShrS: { // TODO(zhin): there is vpsraq but requires AVX512 XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); if (HasImmediateInput(instr, 1)) { __ I64x2ShrS(dst, src, i.InputInt6(1), kScratchDoubleReg); } else { __ I64x2ShrS(dst, src, i.InputRegister(1), kScratchDoubleReg, i.TempSimd128Register(0), kScratchRegister); } break; } case kX64I64x2Add: { ASSEMBLE_SIMD_BINOP(paddq); break; } case kX64I64x2Sub: { ASSEMBLE_SIMD_BINOP(psubq); break; } case kX64I64x2Mul: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); XMMRegister left = i.InputSimd128Register(0); XMMRegister right = i.InputSimd128Register(1); XMMRegister tmp1 = i.TempSimd128Register(0); XMMRegister tmp2 = kScratchDoubleReg; __ Movdqa(tmp1, left); __ Movdqa(tmp2, right); // Multiply high dword of each qword of left with right. __ Psrlq(tmp1, byte{32}); __ Pmuludq(tmp1, right); // Multiply high dword of each qword of right with left. __ Psrlq(tmp2, byte{32}); __ Pmuludq(tmp2, left); __ Paddq(tmp2, tmp1); __ Psllq(tmp2, byte{32}); __ Pmuludq(left, right); __ Paddq(left, tmp2); // left == dst break; } case kX64I64x2Eq: { CpuFeatureScope sse_scope(tasm(), SSE4_1); ASSEMBLE_SIMD_BINOP(pcmpeqq); break; } case kX64I64x2Ne: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ Pcmpeqq(i.OutputSimd128Register(), i.InputSimd128Register(1)); __ Pcmpeqq(kScratchDoubleReg, kScratchDoubleReg); __ Pxor(i.OutputSimd128Register(), kScratchDoubleReg); break; } case kX64I64x2GtS: { __ I64x2GtS(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kX64I64x2GeS: { __ I64x2GeS(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kX64I64x2ShrU: { // Take shift value modulo 2^6. ASSEMBLE_SIMD_SHIFT(psrlq, 6); break; } case kX64I64x2ExtMulLowI32x4S: { __ I64x2ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/true, /*is_signed=*/true); break; } case kX64I64x2ExtMulHighI32x4S: { __ I64x2ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/false, /*is_signed=*/true); break; } case kX64I64x2ExtMulLowI32x4U: { __ I64x2ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/true, /*is_signed=*/false); break; } case kX64I64x2ExtMulHighI32x4U: { __ I64x2ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/false, /*is_signed=*/false); break; } case kX64I64x2SConvertI32x4Low: { __ Pmovsxdq(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I64x2SConvertI32x4High: { __ I64x2SConvertI32x4High(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I64x2UConvertI32x4Low: { __ Pmovzxdq(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I64x2UConvertI32x4High: { __ I64x2UConvertI32x4High(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kX64I32x4Splat: { XMMRegister dst = i.OutputSimd128Register(); if (HasRegisterInput(instr, 0)) { __ Movd(dst, i.InputRegister(0)); } else { // TODO(v8:9198): Pshufd can load from aligned memory once supported. __ Movd(dst, i.InputOperand(0)); } __ Pshufd(dst, dst, uint8_t{0x0}); break; } case kX64I32x4ExtractLane: { __ Pextrd(i.OutputRegister(), i.InputSimd128Register(0), i.InputInt8(1)); break; } case kX64I32x4SConvertF32x4: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); XMMRegister dst = i.OutputSimd128Register(); // NAN->0 __ Movaps(kScratchDoubleReg, dst); __ Cmpeqps(kScratchDoubleReg, kScratchDoubleReg); __ Pand(dst, kScratchDoubleReg); // Set top bit if >= 0 (but not -0.0!) __ Pxor(kScratchDoubleReg, dst); // Convert __ Cvttps2dq(dst, dst); // Set top bit if >=0 is now < 0 __ Pand(kScratchDoubleReg, dst); __ Psrad(kScratchDoubleReg, byte{31}); // Set positive overflow lanes to 0x7FFFFFFF __ Pxor(dst, kScratchDoubleReg); break; } case kX64I32x4SConvertI16x8Low: { __ Pmovsxwd(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I32x4SConvertI16x8High: { __ I32x4SConvertI16x8High(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I32x4Neg: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); if (dst == src) { __ Pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ Psignd(dst, kScratchDoubleReg); } else { __ Pxor(dst, dst); __ Psubd(dst, src); } break; } case kX64I32x4Shl: { // Take shift value modulo 2^5. ASSEMBLE_SIMD_SHIFT(pslld, 5); break; } case kX64I32x4ShrS: { // Take shift value modulo 2^5. ASSEMBLE_SIMD_SHIFT(psrad, 5); break; } case kX64I32x4Add: { ASSEMBLE_SIMD_BINOP(paddd); break; } case kX64I32x4Sub: { ASSEMBLE_SIMD_BINOP(psubd); break; } case kX64I32x4Mul: { ASSEMBLE_SIMD_BINOP(pmulld); break; } case kX64I32x4MinS: { ASSEMBLE_SIMD_BINOP(pminsd); break; } case kX64I32x4MaxS: { ASSEMBLE_SIMD_BINOP(pmaxsd); break; } case kX64I32x4Eq: { ASSEMBLE_SIMD_BINOP(pcmpeqd); break; } case kX64I32x4Ne: { __ Pcmpeqd(i.OutputSimd128Register(), i.InputSimd128Register(1)); __ Pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ Pxor(i.OutputSimd128Register(), kScratchDoubleReg); break; } case kX64I32x4GtS: { ASSEMBLE_SIMD_BINOP(pcmpgtd); break; } case kX64I32x4GeS: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(1); __ Pminsd(dst, src); __ Pcmpeqd(dst, src); break; } case kX64I32x4UConvertF32x4: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); XMMRegister dst = i.OutputSimd128Register(); XMMRegister tmp = i.TempSimd128Register(0); XMMRegister tmp2 = i.TempSimd128Register(1); // NAN->0, negative->0 __ Pxor(tmp2, tmp2); __ Maxps(dst, tmp2); // scratch: float representation of max_signed __ Pcmpeqd(tmp2, tmp2); __ Psrld(tmp2, uint8_t{1}); // 0x7fffffff __ Cvtdq2ps(tmp2, tmp2); // 0x4f000000 // tmp: convert (src-max_signed). // Positive overflow lanes -> 0x7FFFFFFF // Negative lanes -> 0 __ Movaps(tmp, dst); __ Subps(tmp, tmp2); __ Cmpleps(tmp2, tmp); __ Cvttps2dq(tmp, tmp); __ Pxor(tmp, tmp2); __ Pxor(tmp2, tmp2); __ Pmaxsd(tmp, tmp2); // convert. Overflow lanes above max_signed will be 0x80000000 __ Cvttps2dq(dst, dst); // Add (src-max_signed) for overflow lanes. __ Paddd(dst, tmp); break; } case kX64I32x4UConvertI16x8Low: { __ Pmovzxwd(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I32x4UConvertI16x8High: { __ I32x4UConvertI16x8High(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kX64I32x4ShrU: { // Take shift value modulo 2^5. ASSEMBLE_SIMD_SHIFT(psrld, 5); break; } case kX64I32x4MinU: { ASSEMBLE_SIMD_BINOP(pminud); break; } case kX64I32x4MaxU: { ASSEMBLE_SIMD_BINOP(pmaxud); break; } case kX64I32x4GtU: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(1); __ Pmaxud(dst, src); __ Pcmpeqd(dst, src); __ Pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ Pxor(dst, kScratchDoubleReg); break; } case kX64I32x4GeU: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(1); __ Pminud(dst, src); __ Pcmpeqd(dst, src); break; } case kX64I32x4Abs: { __ Pabsd(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I32x4BitMask: { __ Movmskps(i.OutputRegister(), i.InputSimd128Register(0)); break; } case kX64I32x4DotI16x8S: { ASSEMBLE_SIMD_BINOP(pmaddwd); break; } case kX64I32x4ExtAddPairwiseI16x8S: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src1 = i.InputSimd128Register(0); // pmaddwd multiplies signed words in src1 and src2, producing signed // doublewords, then adds pairwise. // src1 = |a|b|c|d|e|f|g|h| // src2 = |1|1|1|1|1|1|1|1| // dst = | a*1 + b*1 | c*1 + d*1 | e*1 + f*1 | g*1 + h*1 | Operand src2 = __ ExternalReferenceAsOperand( ExternalReference::address_of_wasm_i16x8_splat_0x0001()); __ Pmaddwd(dst, src1, src2); break; } case kX64I32x4ExtAddPairwiseI16x8U: { __ I32x4ExtAddPairwiseI16x8U(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64S128Const: { // Emit code for generic constants as all zeros, or ones cases will be // handled separately by the selector. XMMRegister dst = i.OutputSimd128Register(); uint32_t imm[4] = {}; for (int j = 0; j < 4; j++) { imm[j] = i.InputUint32(j); } SetupSimdImmediateInRegister(tasm(), imm, dst); break; } case kX64S128Zero: { XMMRegister dst = i.OutputSimd128Register(); __ Pxor(dst, dst); break; } case kX64S128AllOnes: { XMMRegister dst = i.OutputSimd128Register(); __ Pcmpeqd(dst, dst); break; } case kX64I16x8Splat: { XMMRegister dst = i.OutputSimd128Register(); if (HasRegisterInput(instr, 0)) { __ Movd(dst, i.InputRegister(0)); } else { __ Movd(dst, i.InputOperand(0)); } __ Pshuflw(dst, dst, uint8_t{0x0}); __ Pshufd(dst, dst, uint8_t{0x0}); break; } case kX64I16x8ExtractLaneS: { Register dst = i.OutputRegister(); __ Pextrw(dst, i.InputSimd128Register(0), i.InputUint8(1)); __ movsxwl(dst, dst); break; } case kX64I16x8SConvertI8x16Low: { __ Pmovsxbw(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I16x8SConvertI8x16High: { __ I16x8SConvertI8x16High(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I16x8Neg: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); if (dst == src) { __ Pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ Psignw(dst, kScratchDoubleReg); } else { __ Pxor(dst, dst); __ Psubw(dst, src); } break; } case kX64I16x8Shl: { // Take shift value modulo 2^4. ASSEMBLE_SIMD_SHIFT(psllw, 4); break; } case kX64I16x8ShrS: { // Take shift value modulo 2^4. ASSEMBLE_SIMD_SHIFT(psraw, 4); break; } case kX64I16x8SConvertI32x4: { ASSEMBLE_SIMD_BINOP(packssdw); break; } case kX64I16x8Add: { ASSEMBLE_SIMD_BINOP(paddw); break; } case kX64I16x8AddSatS: { ASSEMBLE_SIMD_BINOP(paddsw); break; } case kX64I16x8Sub: { ASSEMBLE_SIMD_BINOP(psubw); break; } case kX64I16x8SubSatS: { ASSEMBLE_SIMD_BINOP(psubsw); break; } case kX64I16x8Mul: { ASSEMBLE_SIMD_BINOP(pmullw); break; } case kX64I16x8MinS: { ASSEMBLE_SIMD_BINOP(pminsw); break; } case kX64I16x8MaxS: { ASSEMBLE_SIMD_BINOP(pmaxsw); break; } case kX64I16x8Eq: { ASSEMBLE_SIMD_BINOP(pcmpeqw); break; } case kX64I16x8Ne: { XMMRegister dst = i.OutputSimd128Register(); __ Pcmpeqw(dst, i.InputSimd128Register(1)); __ Pcmpeqw(kScratchDoubleReg, kScratchDoubleReg); __ Pxor(dst, kScratchDoubleReg); break; } case kX64I16x8GtS: { ASSEMBLE_SIMD_BINOP(pcmpgtw); break; } case kX64I16x8GeS: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(1); __ Pminsw(dst, src); __ Pcmpeqw(dst, src); break; } case kX64I16x8UConvertI8x16Low: { __ Pmovzxbw(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I16x8UConvertI8x16High: { __ I16x8UConvertI8x16High(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kX64I16x8ShrU: { // Take shift value modulo 2^4. ASSEMBLE_SIMD_SHIFT(psrlw, 4); break; } case kX64I16x8UConvertI32x4: { ASSEMBLE_SIMD_BINOP(packusdw); break; } case kX64I16x8AddSatU: { ASSEMBLE_SIMD_BINOP(paddusw); break; } case kX64I16x8SubSatU: { ASSEMBLE_SIMD_BINOP(psubusw); break; } case kX64I16x8MinU: { ASSEMBLE_SIMD_BINOP(pminuw); break; } case kX64I16x8MaxU: { ASSEMBLE_SIMD_BINOP(pmaxuw); break; } case kX64I16x8GtU: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(1); __ Pmaxuw(dst, src); __ Pcmpeqw(dst, src); __ Pcmpeqw(kScratchDoubleReg, kScratchDoubleReg); __ Pxor(dst, kScratchDoubleReg); break; } case kX64I16x8GeU: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(1); __ Pminuw(dst, src); __ Pcmpeqw(dst, src); break; } case kX64I16x8RoundingAverageU: { ASSEMBLE_SIMD_BINOP(pavgw); break; } case kX64I16x8Abs: { __ Pabsw(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I16x8BitMask: { Register dst = i.OutputRegister(); __ Packsswb(kScratchDoubleReg, i.InputSimd128Register(0)); __ Pmovmskb(dst, kScratchDoubleReg); __ shrq(dst, Immediate(8)); break; } case kX64I16x8ExtMulLowI8x16S: { __ I16x8ExtMulLow(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*is_signed=*/true); break; } case kX64I16x8ExtMulHighI8x16S: { __ I16x8ExtMulHighS(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kX64I16x8ExtMulLowI8x16U: { __ I16x8ExtMulLow(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*is_signed=*/false); break; } case kX64I16x8ExtMulHighI8x16U: { __ I16x8ExtMulHighU(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kX64I16x8ExtAddPairwiseI8x16S: { __ I16x8ExtAddPairwiseI8x16S(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I16x8ExtAddPairwiseI8x16U: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src1 = i.InputSimd128Register(0); Operand src2 = __ ExternalReferenceAsOperand( ExternalReference::address_of_wasm_i8x16_splat_0x01()); __ Pmaddubsw(dst, src1, src2); break; } case kX64I16x8Q15MulRSatS: { __ I16x8Q15MulRSatS(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1)); break; } case kX64I8x16Splat: { XMMRegister dst = i.OutputSimd128Register(); if (CpuFeatures::IsSupported(AVX2)) { CpuFeatureScope avx_scope(tasm(), AVX); CpuFeatureScope avx2_scope(tasm(), AVX2); if (HasRegisterInput(instr, 0)) { __ vmovd(kScratchDoubleReg, i.InputRegister(0)); __ vpbroadcastb(dst, kScratchDoubleReg); } else { __ vpbroadcastb(dst, i.InputOperand(0)); } } else { if (HasRegisterInput(instr, 0)) { __ Movd(dst, i.InputRegister(0)); } else { __ Movd(dst, i.InputOperand(0)); } __ Xorps(kScratchDoubleReg, kScratchDoubleReg); __ Pshufb(dst, kScratchDoubleReg); } break; } case kX64Pextrb: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); size_t index = 0; if (HasAddressingMode(instr)) { Operand operand = i.MemoryOperand(&index); __ Pextrb(operand, i.InputSimd128Register(index), i.InputUint8(index + 1)); } else { __ Pextrb(i.OutputRegister(), i.InputSimd128Register(0), i.InputUint8(1)); } break; } case kX64Pextrw: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); size_t index = 0; if (HasAddressingMode(instr)) { Operand operand = i.MemoryOperand(&index); __ Pextrw(operand, i.InputSimd128Register(index), i.InputUint8(index + 1)); } else { __ Pextrw(i.OutputRegister(), i.InputSimd128Register(0), i.InputUint8(1)); } break; } case kX64I8x16ExtractLaneS: { Register dst = i.OutputRegister(); __ Pextrb(dst, i.InputSimd128Register(0), i.InputUint8(1)); __ movsxbl(dst, dst); break; } case kX64Pinsrb: { ASSEMBLE_PINSR(Pinsrb); break; } case kX64Pinsrw: { ASSEMBLE_PINSR(Pinsrw); break; } case kX64Pinsrd: { ASSEMBLE_PINSR(Pinsrd); break; } case kX64Pinsrq: { ASSEMBLE_PINSR(Pinsrq); break; } case kX64I8x16SConvertI16x8: { ASSEMBLE_SIMD_BINOP(packsswb); break; } case kX64I8x16Neg: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); if (dst == src) { __ Pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ Psignb(dst, kScratchDoubleReg); } else { __ Pxor(dst, dst); __ Psubb(dst, src); } break; } case kX64I8x16Shl: { XMMRegister dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); // Temp registers for shift mask and additional moves to XMM registers. Register tmp = i.ToRegister(instr->TempAt(0)); XMMRegister tmp_simd = i.TempSimd128Register(1); if (HasImmediateInput(instr, 1)) { // Perform 16-bit shift, then mask away low bits. uint8_t shift = i.InputInt3(1); __ Psllw(dst, byte{shift}); uint8_t bmask = static_cast<uint8_t>(0xff << shift); uint32_t mask = bmask << 24 | bmask << 16 | bmask << 8 | bmask; __ movl(tmp, Immediate(mask)); __ Movd(tmp_simd, tmp); __ Pshufd(tmp_simd, tmp_simd, uint8_t{0}); __ Pand(dst, tmp_simd); } else { // Mask off the unwanted bits before word-shifting. __ Pcmpeqw(kScratchDoubleReg, kScratchDoubleReg); // Take shift value modulo 8. __ movq(tmp, i.InputRegister(1)); __ andq(tmp, Immediate(7)); __ addq(tmp, Immediate(8)); __ Movq(tmp_simd, tmp); __ Psrlw(kScratchDoubleReg, tmp_simd); __ Packuswb(kScratchDoubleReg, kScratchDoubleReg); __ Pand(dst, kScratchDoubleReg); // TODO(zhin): subq here to avoid asking for another temporary register, // examine codegen for other i8x16 shifts, they use less instructions. __ subq(tmp, Immediate(8)); __ Movq(tmp_simd, tmp); __ Psllw(dst, tmp_simd); } break; } case kX64I8x16ShrS: { XMMRegister dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); if (HasImmediateInput(instr, 1)) { __ Punpckhbw(kScratchDoubleReg, dst); __ Punpcklbw(dst, dst); uint8_t shift = i.InputInt3(1) + 8; __ Psraw(kScratchDoubleReg, shift); __ Psraw(dst, shift); __ Packsswb(dst, kScratchDoubleReg); } else { // Temp registers for shift mask andadditional moves to XMM registers. Register tmp = i.ToRegister(instr->TempAt(0)); XMMRegister tmp_simd = i.TempSimd128Register(1); // Unpack the bytes into words, do arithmetic shifts, and repack. __ Punpckhbw(kScratchDoubleReg, dst); __ Punpcklbw(dst, dst); // Prepare shift value __ movq(tmp, i.InputRegister(1)); // Take shift value modulo 8. __ andq(tmp, Immediate(7)); __ addq(tmp, Immediate(8)); __ Movq(tmp_simd, tmp); __ Psraw(kScratchDoubleReg, tmp_simd); __ Psraw(dst, tmp_simd); __ Packsswb(dst, kScratchDoubleReg); } break; } case kX64I8x16Add: { ASSEMBLE_SIMD_BINOP(paddb); break; } case kX64I8x16AddSatS: { ASSEMBLE_SIMD_BINOP(paddsb); break; } case kX64I8x16Sub: { ASSEMBLE_SIMD_BINOP(psubb); break; } case kX64I8x16SubSatS: { ASSEMBLE_SIMD_BINOP(psubsb); break; } case kX64I8x16MinS: { ASSEMBLE_SIMD_BINOP(pminsb); break; } case kX64I8x16MaxS: { ASSEMBLE_SIMD_BINOP(pmaxsb); break; } case kX64I8x16Eq: { ASSEMBLE_SIMD_BINOP(pcmpeqb); break; } case kX64I8x16Ne: { XMMRegister dst = i.OutputSimd128Register(); __ Pcmpeqb(dst, i.InputSimd128Register(1)); __ Pcmpeqb(kScratchDoubleReg, kScratchDoubleReg); __ Pxor(dst, kScratchDoubleReg); break; } case kX64I8x16GtS: { ASSEMBLE_SIMD_BINOP(pcmpgtb); break; } case kX64I8x16GeS: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(1); __ Pminsb(dst, src); __ Pcmpeqb(dst, src); break; } case kX64I8x16UConvertI16x8: { ASSEMBLE_SIMD_BINOP(packuswb); break; } case kX64I8x16ShrU: { XMMRegister dst = i.OutputSimd128Register(); // Unpack the bytes into words, do logical shifts, and repack. DCHECK_EQ(dst, i.InputSimd128Register(0)); // Temp registers for shift mask andadditional moves to XMM registers. Register tmp = i.ToRegister(instr->TempAt(0)); XMMRegister tmp_simd = i.TempSimd128Register(1); if (HasImmediateInput(instr, 1)) { // Perform 16-bit shift, then mask away high bits. uint8_t shift = i.InputInt3(1); __ Psrlw(dst, byte{shift}); uint8_t bmask = 0xff >> shift; uint32_t mask = bmask << 24 | bmask << 16 | bmask << 8 | bmask; __ movl(tmp, Immediate(mask)); __ Movd(tmp_simd, tmp); __ Pshufd(tmp_simd, tmp_simd, byte{0}); __ Pand(dst, tmp_simd); } else { __ Punpckhbw(kScratchDoubleReg, dst); __ Punpcklbw(dst, dst); // Prepare shift value __ movq(tmp, i.InputRegister(1)); // Take shift value modulo 8. __ andq(tmp, Immediate(7)); __ addq(tmp, Immediate(8)); __ Movq(tmp_simd, tmp); __ Psrlw(kScratchDoubleReg, tmp_simd); __ Psrlw(dst, tmp_simd); __ Packuswb(dst, kScratchDoubleReg); } break; } case kX64I8x16AddSatU: { ASSEMBLE_SIMD_BINOP(paddusb); break; } case kX64I8x16SubSatU: { ASSEMBLE_SIMD_BINOP(psubusb); break; } case kX64I8x16MinU: { ASSEMBLE_SIMD_BINOP(pminub); break; } case kX64I8x16MaxU: { ASSEMBLE_SIMD_BINOP(pmaxub); break; } case kX64I8x16GtU: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(1); __ Pmaxub(dst, src); __ Pcmpeqb(dst, src); __ Pcmpeqb(kScratchDoubleReg, kScratchDoubleReg); __ Pxor(dst, kScratchDoubleReg); break; } case kX64I8x16GeU: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(1); __ Pminub(dst, src); __ Pcmpeqb(dst, src); break; } case kX64I8x16RoundingAverageU: { ASSEMBLE_SIMD_BINOP(pavgb); break; } case kX64I8x16Abs: { __ Pabsb(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kX64I8x16BitMask: { __ Pmovmskb(i.OutputRegister(), i.InputSimd128Register(0)); break; } case kX64I32x4ExtMulLowI16x8S: { __ I32x4ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/true, /*is_signed=*/true); break; } case kX64I32x4ExtMulHighI16x8S: { __ I32x4ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/false, /*is_signed=*/true); break; } case kX64I32x4ExtMulLowI16x8U: { __ I32x4ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/true, /*is_signed=*/false); break; } case kX64I32x4ExtMulHighI16x8U: { __ I32x4ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/false, /*is_signed=*/false); break; } case kX64S128And: { ASSEMBLE_SIMD_BINOP(pand); break; } case kX64S128Or: { ASSEMBLE_SIMD_BINOP(por); break; } case kX64S128Xor: { ASSEMBLE_SIMD_BINOP(pxor); break; } case kX64S128Not: { __ S128Not(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kX64S128Select: { __ S128Select(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), i.InputSimd128Register(2), kScratchDoubleReg); break; } case kX64S128AndNot: { XMMRegister dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); // The inputs have been inverted by instruction selector, so we can call // andnps here without any modifications. __ Andnps(dst, i.InputSimd128Register(1)); break; } case kX64I8x16Swizzle: { bool omit_add = MiscField::decode(instr->opcode()); __ I8x16Swizzle(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), omit_add); break; } case kX64I8x16Shuffle: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister tmp_simd = i.TempSimd128Register(0); DCHECK_NE(tmp_simd, i.InputSimd128Register(0)); if (instr->InputCount() == 5) { // only one input operand uint32_t mask[4] = {}; DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); for (int j = 4; j > 0; j--) { mask[j - 1] = i.InputUint32(j); } SetupSimdImmediateInRegister(tasm(), mask, tmp_simd); __ Pshufb(dst, tmp_simd); } else { // two input operands DCHECK_NE(tmp_simd, i.InputSimd128Register(1)); DCHECK_EQ(6, instr->InputCount()); ASSEMBLE_SIMD_INSTR(Movdqu, kScratchDoubleReg, 0); uint32_t mask1[4] = {}; for (int j = 5; j > 1; j--) { uint32_t lanes = i.InputUint32(j); for (int k = 0; k < 32; k += 8) { uint8_t lane = lanes >> k; mask1[j - 2] |= (lane < kSimd128Size ? lane : 0x80) << k; } } SetupSimdImmediateInRegister(tasm(), mask1, tmp_simd); __ Pshufb(kScratchDoubleReg, tmp_simd); uint32_t mask2[4] = {}; if (instr->InputAt(1)->IsSimd128Register()) { XMMRegister src1 = i.InputSimd128Register(1); if (src1 != dst) __ Movdqa(dst, src1); } else { __ Movdqu(dst, i.InputOperand(1)); } for (int j = 5; j > 1; j--) { uint32_t lanes = i.InputUint32(j); for (int k = 0; k < 32; k += 8) { uint8_t lane = lanes >> k; mask2[j - 2] |= (lane >= kSimd128Size ? (lane & 0x0F) : 0x80) << k; } } SetupSimdImmediateInRegister(tasm(), mask2, tmp_simd); __ Pshufb(dst, tmp_simd); __ Por(dst, kScratchDoubleReg); } break; } case kX64I8x16Popcnt: { __ I8x16Popcnt(i.OutputSimd128Register(), i.InputSimd128Register(0), i.TempSimd128Register(0)); break; } case kX64S128Load8Splat: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); XMMRegister dst = i.OutputSimd128Register(); if (CpuFeatures::IsSupported(AVX2)) { CpuFeatureScope avx2_scope(tasm(), AVX2); __ vpbroadcastb(dst, i.MemoryOperand()); } else { __ Pinsrb(dst, dst, i.MemoryOperand(), 0); __ Pxor(kScratchDoubleReg, kScratchDoubleReg); __ Pshufb(dst, kScratchDoubleReg); } break; } case kX64S128Load16Splat: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); XMMRegister dst = i.OutputSimd128Register(); if (CpuFeatures::IsSupported(AVX2)) { CpuFeatureScope avx2_scope(tasm(), AVX2); __ vpbroadcastw(dst, i.MemoryOperand()); } else { __ Pinsrw(dst, dst, i.MemoryOperand(), 0); __ Pshuflw(dst, dst, uint8_t{0}); __ Punpcklqdq(dst, dst); } break; } case kX64S128Load32Splat: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope avx_scope(tasm(), AVX); __ vbroadcastss(i.OutputSimd128Register(), i.MemoryOperand()); } else { __ movss(i.OutputSimd128Register(), i.MemoryOperand()); __ shufps(i.OutputSimd128Register(), i.OutputSimd128Register(), byte{0}); } break; } case kX64S128Load64Splat: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); __ Movddup(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kX64S128Load8x8S: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); __ Pmovsxbw(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kX64S128Load8x8U: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); __ Pmovzxbw(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kX64S128Load16x4S: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); __ Pmovsxwd(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kX64S128Load16x4U: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); __ Pmovzxwd(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kX64S128Load32x2S: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); __ Pmovsxdq(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kX64S128Load32x2U: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); __ Pmovzxdq(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kX64S128Store32Lane: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); size_t index = 0; Operand operand = i.MemoryOperand(&index); uint8_t lane = i.InputUint8(index + 1); __ S128Store32Lane(operand, i.InputSimd128Register(index), lane); break; } case kX64S128Store64Lane: { EmitOOLTrapIfNeeded(zone(), this, opcode, instr, __ pc_offset()); size_t index = 0; Operand operand = i.MemoryOperand(&index); uint8_t lane = i.InputUint8(index + 1); __ S128Store64Lane(operand, i.InputSimd128Register(index), lane); break; } case kX64Shufps: { __ Shufps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), i.InputUint8(2)); break; } case kX64S32x4Rotate: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); uint8_t mask = i.InputUint8(1); if (dst == src) { // 1-byte shorter encoding than pshufd. __ Shufps(dst, src, src, mask); } else { __ Pshufd(dst, src, mask); } break; } case kX64S32x4Swizzle: { DCHECK_EQ(2, instr->InputCount()); ASSEMBLE_SIMD_IMM_INSTR(Pshufd, i.OutputSimd128Register(), 0, i.InputUint8(1)); break; } case kX64S32x4Shuffle: { DCHECK_EQ(4, instr->InputCount()); // Swizzles should be handled above. uint8_t shuffle = i.InputUint8(2); DCHECK_NE(0xe4, shuffle); // A simple blend should be handled below. ASSEMBLE_SIMD_IMM_INSTR(Pshufd, kScratchDoubleReg, 1, shuffle); ASSEMBLE_SIMD_IMM_INSTR(Pshufd, i.OutputSimd128Register(), 0, shuffle); __ Pblendw(i.OutputSimd128Register(), kScratchDoubleReg, i.InputUint8(3)); break; } case kX64S16x8Blend: { ASSEMBLE_SIMD_IMM_SHUFFLE(pblendw, i.InputUint8(2)); break; } case kX64S16x8HalfShuffle1: { XMMRegister dst = i.OutputSimd128Register(); uint8_t mask_lo = i.InputUint8(1); uint8_t mask_hi = i.InputUint8(2); if (mask_lo != 0xe4) { ASSEMBLE_SIMD_IMM_INSTR(Pshuflw, dst, 0, mask_lo); if (mask_hi != 0xe4) __ Pshufhw(dst, dst, mask_hi); } else { DCHECK_NE(mask_hi, 0xe4); ASSEMBLE_SIMD_IMM_INSTR(Pshufhw, dst, 0, mask_hi); } break; } case kX64S16x8HalfShuffle2: { XMMRegister dst = i.OutputSimd128Register(); ASSEMBLE_SIMD_IMM_INSTR(Pshuflw, kScratchDoubleReg, 1, i.InputUint8(2)); __ Pshufhw(kScratchDoubleReg, kScratchDoubleReg, i.InputUint8(3)); ASSEMBLE_SIMD_IMM_INSTR(Pshuflw, dst, 0, i.InputUint8(2)); __ Pshufhw(dst, dst, i.InputUint8(3)); __ Pblendw(dst, kScratchDoubleReg, i.InputUint8(4)); break; } case kX64S8x16Alignr: { ASSEMBLE_SIMD_IMM_SHUFFLE(palignr, i.InputUint8(2)); break; } case kX64S16x8Dup: { XMMRegister dst = i.OutputSimd128Register(); uint8_t lane = i.InputInt8(1) & 0x7; uint8_t lane4 = lane & 0x3; uint8_t half_dup = lane4 | (lane4 << 2) | (lane4 << 4) | (lane4 << 6); if (lane < 4) { ASSEMBLE_SIMD_IMM_INSTR(Pshuflw, dst, 0, half_dup); __ Pshufd(dst, dst, uint8_t{0}); } else { ASSEMBLE_SIMD_IMM_INSTR(Pshufhw, dst, 0, half_dup); __ Pshufd(dst, dst, uint8_t{0xaa}); } break; } case kX64S8x16Dup: { XMMRegister dst = i.OutputSimd128Register(); uint8_t lane = i.InputInt8(1) & 0xf; DCHECK_EQ(dst, i.InputSimd128Register(0)); if (lane < 8) { __ Punpcklbw(dst, dst); } else { __ Punpckhbw(dst, dst); } lane &= 0x7; uint8_t lane4 = lane & 0x3; uint8_t half_dup = lane4 | (lane4 << 2) | (lane4 << 4) | (lane4 << 6); if (lane < 4) { __ Pshuflw(dst, dst, half_dup); __ Pshufd(dst, dst, uint8_t{0}); } else { __ Pshufhw(dst, dst, half_dup); __ Pshufd(dst, dst, uint8_t{0xaa}); } break; } case kX64S64x2UnpackHigh: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpckhqdq); break; case kX64S32x4UnpackHigh: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpckhdq); break; case kX64S16x8UnpackHigh: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpckhwd); break; case kX64S8x16UnpackHigh: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpckhbw); break; case kX64S64x2UnpackLow: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpcklqdq); break; case kX64S32x4UnpackLow: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpckldq); break; case kX64S16x8UnpackLow: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpcklwd); break; case kX64S8x16UnpackLow: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpcklbw); break; case kX64S16x8UnzipHigh: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src2 = dst; DCHECK_EQ(dst, i.InputSimd128Register(0)); if (instr->InputCount() == 2) { ASSEMBLE_SIMD_INSTR(Movdqu, kScratchDoubleReg, 1); __ Psrld(kScratchDoubleReg, byte{16}); src2 = kScratchDoubleReg; } __ Psrld(dst, byte{16}); __ Packusdw(dst, src2); break; } case kX64S16x8UnzipLow: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src2 = dst; DCHECK_EQ(dst, i.InputSimd128Register(0)); __ Pxor(kScratchDoubleReg, kScratchDoubleReg); if (instr->InputCount() == 2) { ASSEMBLE_SIMD_IMM_INSTR(Pblendw, kScratchDoubleReg, 1, uint8_t{0x55}); src2 = kScratchDoubleReg; } __ Pblendw(dst, kScratchDoubleReg, uint8_t{0xaa}); __ Packusdw(dst, src2); break; } case kX64S8x16UnzipHigh: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src2 = dst; DCHECK_EQ(dst, i.InputSimd128Register(0)); if (instr->InputCount() == 2) { ASSEMBLE_SIMD_INSTR(Movdqu, kScratchDoubleReg, 1); __ Psrlw(kScratchDoubleReg, byte{8}); src2 = kScratchDoubleReg; } __ Psrlw(dst, byte{8}); __ Packuswb(dst, src2); break; } case kX64S8x16UnzipLow: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src2 = dst; DCHECK_EQ(dst, i.InputSimd128Register(0)); if (instr->InputCount() == 2) { ASSEMBLE_SIMD_INSTR(Movdqu, kScratchDoubleReg, 1); __ Psllw(kScratchDoubleReg, byte{8}); __ Psrlw(kScratchDoubleReg, byte{8}); src2 = kScratchDoubleReg; } __ Psllw(dst, byte{8}); __ Psrlw(dst, byte{8}); __ Packuswb(dst, src2); break; } case kX64S8x16TransposeLow: { XMMRegister dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); __ Psllw(dst, byte{8}); if (instr->InputCount() == 1) { __ Movdqa(kScratchDoubleReg, dst); } else { DCHECK_EQ(2, instr->InputCount()); ASSEMBLE_SIMD_INSTR(Movdqu, kScratchDoubleReg, 1); __ Psllw(kScratchDoubleReg, byte{8}); } __ Psrlw(dst, byte{8}); __ Por(dst, kScratchDoubleReg); break; } case kX64S8x16TransposeHigh: { XMMRegister dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); __ Psrlw(dst, byte{8}); if (instr->InputCount() == 1) { __ Movdqa(kScratchDoubleReg, dst); } else { DCHECK_EQ(2, instr->InputCount()); ASSEMBLE_SIMD_INSTR(Movdqu, kScratchDoubleReg, 1); __ Psrlw(kScratchDoubleReg, byte{8}); } __ Psllw(kScratchDoubleReg, byte{8}); __ Por(dst, kScratchDoubleReg); break; } case kX64S8x8Reverse: case kX64S8x4Reverse: case kX64S8x2Reverse: { DCHECK_EQ(1, instr->InputCount()); XMMRegister dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); if (arch_opcode != kX64S8x2Reverse) { // First shuffle words into position. uint8_t shuffle_mask = arch_opcode == kX64S8x4Reverse ? 0xB1 : 0x1B; __ Pshuflw(dst, dst, shuffle_mask); __ Pshufhw(dst, dst, shuffle_mask); } __ Movdqa(kScratchDoubleReg, dst); __ Psrlw(kScratchDoubleReg, byte{8}); __ Psllw(dst, byte{8}); __ Por(dst, kScratchDoubleReg); break; } case kX64V128AnyTrue: { Register dst = i.OutputRegister(); XMMRegister src = i.InputSimd128Register(0); __ xorq(dst, dst); __ Ptest(src, src); __ setcc(not_equal, dst); break; } // Need to split up all the different lane structures because the // comparison instruction used matters, e.g. given 0xff00, pcmpeqb returns // 0x0011, pcmpeqw returns 0x0000, ptest will set ZF to 0 and 1 // respectively. case kX64I64x2AllTrue: { ASSEMBLE_SIMD_ALL_TRUE(Pcmpeqq); break; } case kX64I32x4AllTrue: { ASSEMBLE_SIMD_ALL_TRUE(Pcmpeqd); break; } case kX64I16x8AllTrue: { ASSEMBLE_SIMD_ALL_TRUE(Pcmpeqw); break; } case kX64I8x16AllTrue: { ASSEMBLE_SIMD_ALL_TRUE(Pcmpeqb); break; } case kWord32AtomicExchangeInt8: { __ xchgb(i.InputRegister(0), i.MemoryOperand(1)); __ movsxbl(i.InputRegister(0), i.InputRegister(0)); break; } case kWord32AtomicExchangeUint8: { __ xchgb(i.InputRegister(0), i.MemoryOperand(1)); __ movzxbl(i.InputRegister(0), i.InputRegister(0)); break; } case kWord32AtomicExchangeInt16: { __ xchgw(i.InputRegister(0), i.MemoryOperand(1)); __ movsxwl(i.InputRegister(0), i.InputRegister(0)); break; } case kWord32AtomicExchangeUint16: { __ xchgw(i.InputRegister(0), i.MemoryOperand(1)); __ movzxwl(i.InputRegister(0), i.InputRegister(0)); break; } case kWord32AtomicExchangeWord32: { __ xchgl(i.InputRegister(0), i.MemoryOperand(1)); break; } case kWord32AtomicCompareExchangeInt8: { __ lock(); __ cmpxchgb(i.MemoryOperand(2), i.InputRegister(1)); __ movsxbl(rax, rax); break; } case kWord32AtomicCompareExchangeUint8: { __ lock(); __ cmpxchgb(i.MemoryOperand(2), i.InputRegister(1)); __ movzxbl(rax, rax); break; } case kWord32AtomicCompareExchangeInt16: { __ lock(); __ cmpxchgw(i.MemoryOperand(2), i.InputRegister(1)); __ movsxwl(rax, rax); break; } case kWord32AtomicCompareExchangeUint16: { __ lock(); __ cmpxchgw(i.MemoryOperand(2), i.InputRegister(1)); __ movzxwl(rax, rax); break; } case kWord32AtomicCompareExchangeWord32: { __ lock(); __ cmpxchgl(i.MemoryOperand(2), i.InputRegister(1)); break; } #define ATOMIC_BINOP_CASE(op, inst) \ case kWord32Atomic##op##Int8: \ ASSEMBLE_ATOMIC_BINOP(inst, movb, cmpxchgb); \ __ movsxbl(rax, rax); \ break; \ case kWord32Atomic##op##Uint8: \ ASSEMBLE_ATOMIC_BINOP(inst, movb, cmpxchgb); \ __ movzxbl(rax, rax); \ break; \ case kWord32Atomic##op##Int16: \ ASSEMBLE_ATOMIC_BINOP(inst, movw, cmpxchgw); \ __ movsxwl(rax, rax); \ break; \ case kWord32Atomic##op##Uint16: \ ASSEMBLE_ATOMIC_BINOP(inst, movw, cmpxchgw); \ __ movzxwl(rax, rax); \ break; \ case kWord32Atomic##op##Word32: \ ASSEMBLE_ATOMIC_BINOP(inst, movl, cmpxchgl); \ break; ATOMIC_BINOP_CASE(Add, addl) ATOMIC_BINOP_CASE(Sub, subl) ATOMIC_BINOP_CASE(And, andl) ATOMIC_BINOP_CASE(Or, orl) ATOMIC_BINOP_CASE(Xor, xorl) #undef ATOMIC_BINOP_CASE case kX64Word64AtomicExchangeUint8: { __ xchgb(i.InputRegister(0), i.MemoryOperand(1)); __ movzxbq(i.InputRegister(0), i.InputRegister(0)); break; } case kX64Word64AtomicExchangeUint16: { __ xchgw(i.InputRegister(0), i.MemoryOperand(1)); __ movzxwq(i.InputRegister(0), i.InputRegister(0)); break; } case kX64Word64AtomicExchangeUint32: { __ xchgl(i.InputRegister(0), i.MemoryOperand(1)); break; } case kX64Word64AtomicExchangeUint64: { __ xchgq(i.InputRegister(0), i.MemoryOperand(1)); break; } case kX64Word64AtomicCompareExchangeUint8: { __ lock(); __ cmpxchgb(i.MemoryOperand(2), i.InputRegister(1)); __ movzxbq(rax, rax); break; } case kX64Word64AtomicCompareExchangeUint16: { __ lock(); __ cmpxchgw(i.MemoryOperand(2), i.InputRegister(1)); __ movzxwq(rax, rax); break; } case kX64Word64AtomicCompareExchangeUint32: { __ lock(); __ cmpxchgl(i.MemoryOperand(2), i.InputRegister(1)); // Zero-extend the 32 bit value to 64 bit. __ movl(rax, rax); break; } case kX64Word64AtomicCompareExchangeUint64: { __ lock(); __ cmpxchgq(i.MemoryOperand(2), i.InputRegister(1)); break; } #define ATOMIC64_BINOP_CASE(op, inst) \ case kX64Word64Atomic##op##Uint8: \ ASSEMBLE_ATOMIC64_BINOP(inst, movb, cmpxchgb); \ __ movzxbq(rax, rax); \ break; \ case kX64Word64Atomic##op##Uint16: \ ASSEMBLE_ATOMIC64_BINOP(inst, movw, cmpxchgw); \ __ movzxwq(rax, rax); \ break; \ case kX64Word64Atomic##op##Uint32: \ ASSEMBLE_ATOMIC64_BINOP(inst, movl, cmpxchgl); \ break; \ case kX64Word64Atomic##op##Uint64: \ ASSEMBLE_ATOMIC64_BINOP(inst, movq, cmpxchgq); \ break; ATOMIC64_BINOP_CASE(Add, addq) ATOMIC64_BINOP_CASE(Sub, subq) ATOMIC64_BINOP_CASE(And, andq) ATOMIC64_BINOP_CASE(Or, orq) ATOMIC64_BINOP_CASE(Xor, xorq) #undef ATOMIC64_BINOP_CASE case kWord32AtomicLoadInt8: case kWord32AtomicLoadUint8: case kWord32AtomicLoadInt16: case kWord32AtomicLoadUint16: case kWord32AtomicLoadWord32: case kWord32AtomicStoreWord8: case kWord32AtomicStoreWord16: case kWord32AtomicStoreWord32: UNREACHABLE(); // Won't be generated by instruction selector. } return kSuccess; } // NOLadability/fn_size) #undef ASSEMBLE_PINSR #undef ASSEMBLE_UNOP #undef ASSEMBLE_BINOP #undef ASSEMBLE_COMPARE #undef ASSEMBLE_MULT #undef ASSEMBLE_SHIFT #undef ASSEMBLE_MOVX #undef ASSEMBLE_SSE_BINOP #undef ASSEMBLE_SSE_UNOP #undef ASSEMBLE_AVX_BINOP #undef ASSEMBLE_IEEE754_BINOP #undef ASSEMBLE_IEEE754_UNOP #undef ASSEMBLE_ATOMIC_BINOP #undef ASSEMBLE_ATOMIC64_BINOP #undef ASSEMBLE_SIMD_INSTR #undef ASSEMBLE_SIMD_IMM_INSTR #undef ASSEMBLE_SIMD_PUNPCK_SHUFFLE #undef ASSEMBLE_SIMD_IMM_SHUFFLE #undef ASSEMBLE_SIMD_ALL_TRUE #undef ASSEMBLE_SIMD_SHIFT namespace { Condition FlagsConditionToCondition(FlagsCondition condition) { switch (condition) { case kUnorderedEqual: case kEqual: return equal; case kUnorderedNotEqual: case kNotEqual: return not_equal; case kSignedLessThan: return less; case kSignedGreaterThanOrEqual: return greater_equal; case kSignedLessThanOrEqual: return less_equal; case kSignedGreaterThan: return greater; case kUnsignedLessThan: return below; case kUnsignedGreaterThanOrEqual: return above_equal; case kUnsignedLessThanOrEqual: return below_equal; case kUnsignedGreaterThan: return above; case kOverflow: return overflow; case kNotOverflow: return no_overflow; default: break; } UNREACHABLE(); } } // namespace // Assembles branches after this instruction. void CodeGenerator::AssembleArchBranch(Instruction* instr, BranchInfo* branch) { Label::Distance flabel_distance = branch->fallthru ? Label::kNear : Label::kFar; Label* tlabel = branch->true_label; Label* flabel = branch->false_label; if (branch->condition == kUnorderedEqual) { __ j(parity_even, flabel, flabel_distance); } else if (branch->condition == kUnorderedNotEqual) { __ j(parity_even, tlabel); } __ j(FlagsConditionToCondition(branch->condition), tlabel); if (!branch->fallthru) __ jmp(flabel, flabel_distance); } void CodeGenerator::AssembleArchDeoptBranch(Instruction* instr, BranchInfo* branch) { Label::Distance flabel_distance = branch->fallthru ? Label::kNear : Label::kFar; Label* tlabel = branch->true_label; Label* flabel = branch->false_label; Label nodeopt; if (branch->condition == kUnorderedEqual) { __ j(parity_even, flabel, flabel_distance); } else if (branch->condition == kUnorderedNotEqual) { __ j(parity_even, tlabel); } __ j(FlagsConditionToCondition(branch->condition), tlabel); if (FLAG_deopt_every_n_times > 0) { ExternalReference counter = ExternalReference::stress_deopt_count(isolate()); __ pushfq(); __ pushq(rax); __ load_rax(counter); __ decl(rax); __ j(not_zero, &nodeopt, Label::kNear); __ Move(rax, FLAG_deopt_every_n_times); __ store_rax(counter); __ popq(rax); __ popfq(); __ jmp(tlabel); __ bind(&nodeopt); __ store_rax(counter); __ popq(rax); __ popfq(); } if (!branch->fallthru) { __ jmp(flabel, flabel_distance); } } void CodeGenerator::AssembleArchJump(RpoNumber target) { if (!IsNextInAssemblyOrder(target)) __ jmp(GetLabel(target)); } #if V8_ENABLE_WEBASSEMBLY void CodeGenerator::AssembleArchTrap(Instruction* instr, FlagsCondition condition) { auto ool = zone()->New<WasmOutOfLineTrap>(this, instr); Label* tlabel = ool->entry(); Label end; if (condition == kUnorderedEqual) { __ j(parity_even, &end, Label::kNear); } else if (condition == kUnorderedNotEqual) { __ j(parity_even, tlabel); } __ j(FlagsConditionToCondition(condition), tlabel); __ bind(&end); } #endif // V8_ENABLE_WEBASSEMBLY // Assembles boolean materializations after this instruction. void CodeGenerator::AssembleArchBoolean(Instruction* instr, FlagsCondition condition) { X64OperandConverter i(this, instr); Label done; // Materialize a full 64-bit 1 or 0 value. The result register is always the // last output of the instruction. Label check; DCHECK_NE(0u, instr->OutputCount()); Register reg = i.OutputRegister(instr->OutputCount() - 1); if (condition == kUnorderedEqual) { __ j(parity_odd, &check, Label::kNear); __ Move(reg, 0); __ jmp(&done, Label::kNear); } else if (condition == kUnorderedNotEqual) { __ j(parity_odd, &check, Label::kNear); __ Move(reg, 1); __ jmp(&done, Label::kNear); } __ bind(&check); __ setcc(FlagsConditionToCondition(condition), reg); __ movzxbl(reg, reg); __ bind(&done); } void CodeGenerator::AssembleArchBinarySearchSwitch(Instruction* instr) { X64OperandConverter i(this, instr); Register input = i.InputRegister(0); std::vector<std::pair<int32_t, Label*>> cases; for (size_t index = 2; index < instr->InputCount(); index += 2) { cases.push_back({i.InputInt32(index + 0), GetLabel(i.InputRpo(index + 1))}); } AssembleArchBinarySearchSwitchRange(input, i.InputRpo(1), cases.data(), cases.data() + cases.size()); } void CodeGenerator::AssembleArchTableSwitch(Instruction* instr) { X64OperandConverter i(this, instr); Register input = i.InputRegister(0); int32_t const case_count = static_cast<int32_t>(instr->InputCount() - 2); Label** cases = zone()->NewArray<Label*>(case_count); for (int32_t index = 0; index < case_count; ++index) { cases[index] = GetLabel(i.InputRpo(index + 2)); } Label* const table = AddJumpTable(cases, case_count); __ cmpl(input, Immediate(case_count)); __ j(above_equal, GetLabel(i.InputRpo(1))); __ leaq(kScratchRegister, Operand(table)); __ jmp(Operand(kScratchRegister, input, times_8, 0)); } void CodeGenerator::AssembleArchSelect(Instruction* instr, FlagsCondition condition) { X64OperandConverter i(this, instr); MachineRepresentation rep = LocationOperand::cast(instr->OutputAt(0))->representation(); Condition cc = FlagsConditionToCondition(condition); DCHECK_EQ(i.OutputRegister(), i.InputRegister(instr->InputCount() - 2)); size_t last_input = instr->InputCount() - 1; // kUnorderedNotEqual can be implemented more efficiently than // kUnorderedEqual. As the OR of two flags, it can be done with just two // cmovs. If the condition was originally a kUnorderedEqual, expect the // instruction selector to have inverted it and swapped the input. DCHECK_NE(condition, kUnorderedEqual); if (rep == MachineRepresentation::kWord32) { if (HasRegisterInput(instr, last_input)) { __ cmovl(cc, i.OutputRegister(), i.InputRegister(last_input)); if (condition == kUnorderedNotEqual) { __ cmovl(parity_even, i.OutputRegister(), i.InputRegister(last_input)); } } else { __ cmovl(cc, i.OutputRegister(), i.InputOperand(last_input)); if (condition == kUnorderedNotEqual) { __ cmovl(parity_even, i.OutputRegister(), i.InputOperand(last_input)); } } } else { DCHECK_EQ(rep, MachineRepresentation::kWord64); if (HasRegisterInput(instr, last_input)) { __ cmovq(cc, i.OutputRegister(), i.InputRegister(last_input)); if (condition == kUnorderedNotEqual) { __ cmovq(parity_even, i.OutputRegister(), i.InputRegister(last_input)); } } else { __ cmovq(cc, i.OutputRegister(), i.InputOperand(last_input)); if (condition == kUnorderedNotEqual) { __ cmovq(parity_even, i.OutputRegister(), i.InputOperand(last_input)); } } } } namespace { static const int kQuadWordSize = 16; } // namespace void CodeGenerator::FinishFrame(Frame* frame) { CallDescriptor* call_descriptor = linkage()->GetIncomingDescriptor(); const RegList saves_fp = call_descriptor->CalleeSavedFPRegisters(); if (saves_fp != 0) { // Save callee-saved XMM registers. frame->AlignSavedCalleeRegisterSlots(); const uint32_t saves_fp_count = base::bits::CountPopulation(saves_fp); frame->AllocateSavedCalleeRegisterSlots( saves_fp_count * (kQuadWordSize / kSystemPointerSize)); } const RegList saves = call_descriptor->CalleeSavedRegisters(); if (saves != 0) { // Save callee-saved registers. int count = 0; for (int i = Register::kNumRegisters - 1; i >= 0; i--) { if (((1 << i) & saves)) { ++count; } } frame->AllocateSavedCalleeRegisterSlots(count); } } void CodeGenerator::AssembleConstructFrame() { auto call_descriptor = linkage()->GetIncomingDescriptor(); if (frame_access_state()->has_frame()) { int pc_base = __ pc_offset(); if (call_descriptor->IsCFunctionCall()) { __ pushq(rbp); __ movq(rbp, rsp); #if V8_ENABLE_WEBASSEMBLY if (info()->GetOutputStackFrameType() == StackFrame::C_WASM_ENTRY) { __ Push(Immediate(StackFrame::TypeToMarker(StackFrame::C_WASM_ENTRY))); // Reserve stack space for saving the c_entry_fp later. __ AllocateStackSpace(kSystemPointerSize); } #endif // V8_ENABLE_WEBASSEMBLY } else if (call_descriptor->IsJSFunctionCall()) { __ Prologue(); } else { __ StubPrologue(info()->GetOutputStackFrameType()); #if V8_ENABLE_WEBASSEMBLY if (call_descriptor->IsWasmFunctionCall()) { __ pushq(kWasmInstanceRegister); } else if (call_descriptor->IsWasmImportWrapper() || call_descriptor->IsWasmCapiFunction()) { // Wasm import wrappers are passed a tuple in the place of the instance. // Unpack the tuple into the instance and the target callable. // This must be done here in the codegen because it cannot be expressed // properly in the graph. __ LoadTaggedPointerField( kJSFunctionRegister, FieldOperand(kWasmInstanceRegister, Tuple2::kValue2Offset)); __ LoadTaggedPointerField( kWasmInstanceRegister, FieldOperand(kWasmInstanceRegister, Tuple2::kValue1Offset)); __ pushq(kWasmInstanceRegister); if (call_descriptor->IsWasmCapiFunction()) { // Reserve space for saving the PC later. __ AllocateStackSpace(kSystemPointerSize); } } #endif // V8_ENABLE_WEBASSEMBLY } unwinding_info_writer_.MarkFrameConstructed(pc_base); } int required_slots = frame()->GetTotalFrameSlotCount() - frame()->GetFixedSlotCount(); if (info()->is_osr()) { // TurboFan OSR-compiled functions cannot be entered directly. __ Abort(AbortReason::kShouldNotDirectlyEnterOsrFunction); // Unoptimized code jumps directly to this entrypoint while the unoptimized // frame is still on the stack. Optimized code uses OSR values directly from // the unoptimized frame. Thus, all that needs to be done is to allocate the // remaining stack slots. __ RecordComment("-- OSR entrypoint --"); osr_pc_offset_ = __ pc_offset(); required_slots -= static_cast<int>(osr_helper()->UnoptimizedFrameSlots()); } const RegList saves = call_descriptor->CalleeSavedRegisters(); const RegList saves_fp = call_descriptor->CalleeSavedFPRegisters(); if (required_slots > 0) { DCHECK(frame_access_state()->has_frame()); #if V8_ENABLE_WEBASSEMBLY if (info()->IsWasm() && required_slots * kSystemPointerSize > 4 * KB) { // For WebAssembly functions with big frames we have to do the stack // overflow check before we construct the frame. Otherwise we may not // have enough space on the stack to call the runtime for the stack // overflow. Label done; // If the frame is bigger than the stack, we throw the stack overflow // exception unconditionally. Thereby we can avoid the integer overflow // check in the condition code. if (required_slots * kSystemPointerSize < FLAG_stack_size * KB) { __ movq(kScratchRegister, FieldOperand(kWasmInstanceRegister, WasmInstanceObject::kRealStackLimitAddressOffset)); __ movq(kScratchRegister, Operand(kScratchRegister, 0)); __ addq(kScratchRegister, Immediate(required_slots * kSystemPointerSize)); __ cmpq(rsp, kScratchRegister); __ j(above_equal, &done, Label::kNear); } __ near_call(wasm::WasmCode::kWasmStackOverflow, RelocInfo::WASM_STUB_CALL); // The call does not return, hence we can ignore any references and just // define an empty safepoint. ReferenceMap* reference_map = zone()->New<ReferenceMap>(zone()); RecordSafepoint(reference_map); __ AssertUnreachable(AbortReason::kUnexpectedReturnFromWasmTrap); __ bind(&done); } #endif // V8_ENABLE_WEBASSEMBLY // Skip callee-saved and return slots, which are created below. required_slots -= base::bits::CountPopulation(saves); required_slots -= base::bits::CountPopulation(saves_fp) * (kQuadWordSize / kSystemPointerSize); required_slots -= frame()->GetReturnSlotCount(); if (required_slots > 0) { __ AllocateStackSpace(required_slots * kSystemPointerSize); } } if (saves_fp != 0) { // Save callee-saved XMM registers. const uint32_t saves_fp_count = base::bits::CountPopulation(saves_fp); const int stack_size = saves_fp_count * kQuadWordSize; // Adjust the stack pointer. __ AllocateStackSpace(stack_size); // Store the registers on the stack. int slot_idx = 0; for (int i = 0; i < XMMRegister::kNumRegisters; i++) { if (!((1 << i) & saves_fp)) continue; __ Movdqu(Operand(rsp, kQuadWordSize * slot_idx), XMMRegister::from_code(i)); slot_idx++; } } if (saves != 0) { // Save callee-saved registers. for (int i = Register::kNumRegisters - 1; i >= 0; i--) { if (!((1 << i) & saves)) continue; __ pushq(Register::from_code(i)); } } // Allocate return slots (located after callee-saved). if (frame()->GetReturnSlotCount() > 0) { __ AllocateStackSpace(frame()->GetReturnSlotCount() * kSystemPointerSize); } } void CodeGenerator::AssembleReturn(InstructionOperand* additional_pop_count) { auto call_descriptor = linkage()->GetIncomingDescriptor(); // Restore registers. const RegList saves = call_descriptor->CalleeSavedRegisters(); if (saves != 0) { const int returns = frame()->GetReturnSlotCount(); if (returns != 0) { __ addq(rsp, Immediate(returns * kSystemPointerSize)); } for (int i = 0; i < Register::kNumRegisters; i++) { if (!((1 << i) & saves)) continue; __ popq(Register::from_code(i)); } } const RegList saves_fp = call_descriptor->CalleeSavedFPRegisters(); if (saves_fp != 0) { const uint32_t saves_fp_count = base::bits::CountPopulation(saves_fp); const int stack_size = saves_fp_count * kQuadWordSize; // Load the registers from the stack. int slot_idx = 0; for (int i = 0; i < XMMRegister::kNumRegisters; i++) { if (!((1 << i) & saves_fp)) continue; __ Movdqu(XMMRegister::from_code(i), Operand(rsp, kQuadWordSize * slot_idx)); slot_idx++; } // Adjust the stack pointer. __ addq(rsp, Immediate(stack_size)); } unwinding_info_writer_.MarkBlockWillExit(); X64OperandConverter g(this, nullptr); int parameter_slots = static_cast<int>(call_descriptor->ParameterSlotCount()); // {aditional_pop_count} is only greater than zero if {parameter_slots = 0}. // Check RawMachineAssembler::PopAndReturn. if (parameter_slots != 0) { if (additional_pop_count->IsImmediate()) { DCHECK_EQ(g.ToConstant(additional_pop_count).ToInt32(), 0); } else if (FLAG_debug_code) { __ cmpq(g.ToRegister(additional_pop_count), Immediate(0)); __ Assert(equal, AbortReason::kUnexpectedAdditionalPopValue); } } Register argc_reg = rcx; // Functions with JS linkage have at least one parameter (the receiver). // If {parameter_slots} == 0, it means it is a builtin with // kDontAdaptArgumentsSentinel, which takes care of JS arguments popping // itself. const bool drop_jsargs = parameter_slots != 0 && frame_access_state()->has_frame() && call_descriptor->IsJSFunctionCall(); if (call_descriptor->IsCFunctionCall()) { AssembleDeconstructFrame(); } else if (frame_access_state()->has_frame()) { if (additional_pop_count->IsImmediate() && g.ToConstant(additional_pop_count).ToInt32() == 0) { // Canonicalize JSFunction return sites for now. if (return_label_.is_bound()) { __ jmp(&return_label_); return; } else { __ bind(&return_label_); } } if (drop_jsargs) { // Get the actual argument count. DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters() & argc_reg.bit()); __ movq(argc_reg, Operand(rbp, StandardFrameConstants::kArgCOffset)); } AssembleDeconstructFrame(); } if (drop_jsargs) { // We must pop all arguments from the stack (including the receiver). // The number of arguments without the receiver is // max(argc_reg, parameter_slots-1), and the receiver is added in // DropArguments(). int parameter_slots_without_receiver = parameter_slots - 1; Label mismatch_return; Register scratch_reg = r10; DCHECK_NE(argc_reg, scratch_reg); DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters() & scratch_reg.bit()); DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters() & argc_reg.bit()); __ cmpq(argc_reg, Immediate(parameter_slots_without_receiver)); __ j(greater, &mismatch_return, Label::kNear); __ Ret(parameter_slots * kSystemPointerSize, scratch_reg); __ bind(&mismatch_return); __ DropArguments(argc_reg, scratch_reg, TurboAssembler::kCountIsInteger, TurboAssembler::kCountExcludesReceiver); // We use a return instead of a jump for better return address prediction. __ Ret(); } else if (additional_pop_count->IsImmediate()) { Register scratch_reg = r10; DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters() & scratch_reg.bit()); int additional_count = g.ToConstant(additional_pop_count).ToInt32(); size_t pop_size = (parameter_slots + additional_count) * kSystemPointerSize; CHECK_LE(pop_size, static_cast<size_t>(std::numeric_limits<int>::max())); __ Ret(static_cast<int>(pop_size), scratch_reg); } else { Register pop_reg = g.ToRegister(additional_pop_count); Register scratch_reg = pop_reg == r10 ? rcx : r10; DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters() & scratch_reg.bit()); DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters() & pop_reg.bit()); int pop_size = static_cast<int>(parameter_slots * kSystemPointerSize); __ PopReturnAddressTo(scratch_reg); __ leaq(rsp, Operand(rsp, pop_reg, times_system_pointer_size, static_cast<int>(pop_size))); __ PushReturnAddressFrom(scratch_reg); __ Ret(); } } void CodeGenerator::FinishCode() { tasm()->PatchConstPool(); } void CodeGenerator::PrepareForDeoptimizationExits( ZoneDeque<DeoptimizationExit*>* exits) {} void CodeGenerator::IncrementStackAccessCounter( InstructionOperand* source, InstructionOperand* destination) { DCHECK(FLAG_trace_turbo_stack_accesses); if (!info()->IsOptimizing()) { #if V8_ENABLE_WEBASSEMBLY if (!info()->IsWasm()) return; #else return; #endif // V8_ENABLE_WEBASSEMBLY } DCHECK_NOT_NULL(debug_name_); auto IncrementCounter = [&](ExternalReference counter) { __ incl(__ ExternalReferenceAsOperand(counter)); }; if (source->IsAnyStackSlot()) { IncrementCounter( ExternalReference::address_of_load_from_stack_count(debug_name_)); } if (destination->IsAnyStackSlot()) { IncrementCounter( ExternalReference::address_of_store_to_stack_count(debug_name_)); } } void CodeGenerator::AssembleMove(InstructionOperand* source, InstructionOperand* destination) { X64OperandConverter g(this, nullptr); // Helper function to write the given constant to the dst register. auto MoveConstantToRegister = [&](Register dst, Constant src) { switch (src.type()) { case Constant::kInt32: { if (RelocInfo::IsWasmReference(src.rmode())) { __ movq(dst, Immediate64(src.ToInt64(), src.rmode())); } else { int32_t value = src.ToInt32(); if (value == 0) { __ xorl(dst, dst); } else { __ movl(dst, Immediate(value)); } } break; } case Constant::kInt64: if (RelocInfo::IsWasmReference(src.rmode())) { __ movq(dst, Immediate64(src.ToInt64(), src.rmode())); } else { __ Move(dst, src.ToInt64()); } break; case Constant::kFloat32: __ MoveNumber(dst, src.ToFloat32()); break; case Constant::kFloat64: __ MoveNumber(dst, src.ToFloat64().value()); break; case Constant::kExternalReference: __ Move(dst, src.ToExternalReference()); break; case Constant::kHeapObject: { Handle<HeapObject> src_object = src.ToHeapObject(); RootIndex index; if (IsMaterializableFromRoot(src_object, &index)) { __ LoadRoot(dst, index); } else { __ Move(dst, src_object); } break; } case Constant::kCompressedHeapObject: { Handle<HeapObject> src_object = src.ToHeapObject(); RootIndex index; if (IsMaterializableFromRoot(src_object, &index)) { __ LoadRoot(dst, index); } else { __ Move(dst, src_object, RelocInfo::COMPRESSED_EMBEDDED_OBJECT); } break; } case Constant::kDelayedStringConstant: { const StringConstantBase* src_constant = src.ToDelayedStringConstant(); __ MoveStringConstant(dst, src_constant); break; } case Constant::kRpoNumber: UNREACHABLE(); // TODO(dcarney): load of labels on x64. } }; // Helper function to write the given constant to the stack. auto MoveConstantToSlot = [&](Operand dst, Constant src) { if (!RelocInfo::IsWasmReference(src.rmode())) { switch (src.type()) { case Constant::kInt32: __ Move(dst, src.ToInt32()); return; case Constant::kInt64: __ Move(dst, src.ToInt64()); return; default: break; } } MoveConstantToRegister(kScratchRegister, src); __ movq(dst, kScratchRegister); }; if (FLAG_trace_turbo_stack_accesses) { IncrementStackAccessCounter(source, destination); } // Dispatch on the source and destination operand kinds. switch (MoveType::InferMove(source, destination)) { case MoveType::kRegisterToRegister: if (source->IsRegister()) { __ movq(g.ToRegister(destination), g.ToRegister(source)); } else { DCHECK(source->IsFPRegister()); __ Movapd(g.ToDoubleRegister(destination), g.ToDoubleRegister(source)); } return; case MoveType::kRegisterToStack: { Operand dst = g.ToOperand(destination); if (source->IsRegister()) { __ movq(dst, g.ToRegister(source)); } else { DCHECK(source->IsFPRegister()); XMMRegister src = g.ToDoubleRegister(source); MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep != MachineRepresentation::kSimd128) { __ Movsd(dst, src); } else { __ Movups(dst, src); } } return; } case MoveType::kStackToRegister: { Operand src = g.ToOperand(source); if (source->IsStackSlot()) { __ movq(g.ToRegister(destination), src); } else { DCHECK(source->IsFPStackSlot()); XMMRegister dst = g.ToDoubleRegister(destination); MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep != MachineRepresentation::kSimd128) { __ Movsd(dst, src); } else { __ Movups(dst, src); } } return; } case MoveType::kStackToStack: { Operand src = g.ToOperand(source); Operand dst = g.ToOperand(destination); if (source->IsStackSlot()) { // Spill on demand to use a temporary register for memory-to-memory // moves. __ movq(kScratchRegister, src); __ movq(dst, kScratchRegister); } else { MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep != MachineRepresentation::kSimd128) { __ Movsd(kScratchDoubleReg, src); __ Movsd(dst, kScratchDoubleReg); } else { DCHECK(source->IsSimd128StackSlot()); __ Movups(kScratchDoubleReg, src); __ Movups(dst, kScratchDoubleReg); } } return; } case MoveType::kConstantToRegister: { Constant src = g.ToConstant(source); if (destination->IsRegister()) { MoveConstantToRegister(g.ToRegister(destination), src); } else { DCHECK(destination->IsFPRegister()); XMMRegister dst = g.ToDoubleRegister(destination); if (src.type() == Constant::kFloat32) { // TODO(turbofan): Can we do better here? __ Move(dst, bit_cast<uint32_t>(src.ToFloat32())); } else { DCHECK_EQ(src.type(), Constant::kFloat64); __ Move(dst, src.ToFloat64().AsUint64()); } } return; } case MoveType::kConstantToStack: { Constant src = g.ToConstant(source); Operand dst = g.ToOperand(destination); if (destination->IsStackSlot()) { MoveConstantToSlot(dst, src); } else { DCHECK(destination->IsFPStackSlot()); if (src.type() == Constant::kFloat32) { __ movl(dst, Immediate(bit_cast<uint32_t>(src.ToFloat32()))); } else { DCHECK_EQ(src.type(), Constant::kFloat64); __ Move(dst, src.ToFloat64().AsUint64()); } } return; } } UNREACHABLE(); } void CodeGenerator::AssembleSwap(InstructionOperand* source, InstructionOperand* destination) { if (FLAG_trace_turbo_stack_accesses) { IncrementStackAccessCounter(source, destination); IncrementStackAccessCounter(destination, source); } X64OperandConverter g(this, nullptr); // Dispatch on the source and destination operand kinds. Not all // combinations are possible. switch (MoveType::InferSwap(source, destination)) { case MoveType::kRegisterToRegister: { if (source->IsRegister()) { Register src = g.ToRegister(source); Register dst = g.ToRegister(destination); __ movq(kScratchRegister, src); __ movq(src, dst); __ movq(dst, kScratchRegister); } else { DCHECK(source->IsFPRegister()); XMMRegister src = g.ToDoubleRegister(source); XMMRegister dst = g.ToDoubleRegister(destination); __ Movapd(kScratchDoubleReg, src); __ Movapd(src, dst); __ Movapd(dst, kScratchDoubleReg); } return; } case MoveType::kRegisterToStack: { if (source->IsRegister()) { Register src = g.ToRegister(source); Operand dst = g.ToOperand(destination); __ movq(kScratchRegister, src); __ movq(src, dst); __ movq(dst, kScratchRegister); } else { DCHECK(source->IsFPRegister()); XMMRegister src = g.ToDoubleRegister(source); Operand dst = g.ToOperand(destination); MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep != MachineRepresentation::kSimd128) { __ Movsd(kScratchDoubleReg, src); __ Movsd(src, dst); __ Movsd(dst, kScratchDoubleReg); } else { __ Movups(kScratchDoubleReg, src); __ Movups(src, dst); __ Movups(dst, kScratchDoubleReg); } } return; } case MoveType::kStackToStack: { Operand src = g.ToOperand(source); Operand dst = g.ToOperand(destination); MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep != MachineRepresentation::kSimd128) { Register tmp = kScratchRegister; __ movq(tmp, dst); __ pushq(src); // Then use stack to copy src to destination. unwinding_info_writer_.MaybeIncreaseBaseOffsetAt(__ pc_offset(), kSystemPointerSize); __ popq(dst); unwinding_info_writer_.MaybeIncreaseBaseOffsetAt(__ pc_offset(), -kSystemPointerSize); __ movq(src, tmp); } else { // Without AVX, misaligned reads and writes will trap. Move using the // stack, in two parts. __ movups(kScratchDoubleReg, dst); // Save dst in scratch register. __ pushq(src); // Then use stack to copy src to destination. unwinding_info_writer_.MaybeIncreaseBaseOffsetAt(__ pc_offset(), kSystemPointerSize); __ popq(dst); unwinding_info_writer_.MaybeIncreaseBaseOffsetAt(__ pc_offset(), -kSystemPointerSize); __ pushq(g.ToOperand(source, kSystemPointerSize)); unwinding_info_writer_.MaybeIncreaseBaseOffsetAt(__ pc_offset(), kSystemPointerSize); __ popq(g.ToOperand(destination, kSystemPointerSize)); unwinding_info_writer_.MaybeIncreaseBaseOffsetAt(__ pc_offset(), -kSystemPointerSize); __ movups(src, kScratchDoubleReg); } return; } default: UNREACHABLE(); } } void CodeGenerator::AssembleJumpTable(Label** targets, size_t target_count) { for (size_t index = 0; index < target_count; ++index) { __ dq(targets[index]); } } #undef __ } // namespace compiler } // namespace internal } // namespace v8