%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµùÕ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream
// Copyright 2018 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_LOCAL_ALLOCATOR_INL_H_ #define V8_HEAP_LOCAL_ALLOCATOR_INL_H_ #include "src/heap/local-allocator.h" #include "src/heap/spaces-inl.h" namespace v8 { namespace internal { AllocationResult EvacuationAllocator::Allocate(AllocationSpace space, int object_size, AllocationOrigin origin, AllocationAlignment alignment) { switch (space) { case NEW_SPACE: return AllocateInNewSpace(object_size, origin, alignment); case OLD_SPACE: return compaction_spaces_.Get(OLD_SPACE)->AllocateRaw(object_size, alignment, origin); case CODE_SPACE: return compaction_spaces_.Get(CODE_SPACE) ->AllocateRaw(object_size, alignment, origin); default: UNREACHABLE(); } } void EvacuationAllocator::FreeLast(AllocationSpace space, HeapObject object, int object_size) { switch (space) { case NEW_SPACE: FreeLastInNewSpace(object, object_size); return; case OLD_SPACE: FreeLastInOldSpace(object, object_size); return; default: // Only new and old space supported. UNREACHABLE(); } } void EvacuationAllocator::FreeLastInNewSpace(HeapObject object, int object_size) { if (!new_space_lab_.TryFreeLast(object, object_size)) { // We couldn't free the last object so we have to write a proper filler. heap_->CreateFillerObjectAt(object.address(), object_size, ClearRecordedSlots::kNo); } } void EvacuationAllocator::FreeLastInOldSpace(HeapObject object, int object_size) { if (!compaction_spaces_.Get(OLD_SPACE)->TryFreeLast(object.address(), object_size)) { // We couldn't free the last object so we have to write a proper filler. heap_->CreateFillerObjectAt(object.address(), object_size, ClearRecordedSlots::kNo); } } AllocationResult EvacuationAllocator::AllocateInLAB( int object_size, AllocationAlignment alignment) { AllocationResult allocation; if (!new_space_lab_.IsValid() && !NewLocalAllocationBuffer()) { return AllocationResult::Retry(OLD_SPACE); } allocation = new_space_lab_.AllocateRawAligned(object_size, alignment); if (allocation.IsRetry()) { if (!NewLocalAllocationBuffer()) { return AllocationResult::Retry(OLD_SPACE); } else { allocation = new_space_lab_.AllocateRawAligned(object_size, alignment); CHECK(!allocation.IsRetry()); } } return allocation; } bool EvacuationAllocator::NewLocalAllocationBuffer() { if (lab_allocation_will_fail_) return false; AllocationResult result = new_space_->AllocateRawSynchronized(kLabSize, kWordAligned); if (result.IsRetry()) { lab_allocation_will_fail_ = true; return false; } LocalAllocationBuffer saved_lab = std::move(new_space_lab_); new_space_lab_ = LocalAllocationBuffer::FromResult(heap_, result, kLabSize); DCHECK(new_space_lab_.IsValid()); if (!new_space_lab_.TryMerge(&saved_lab)) { saved_lab.CloseAndMakeIterable(); } return true; } AllocationResult EvacuationAllocator::AllocateInNewSpace( int object_size, AllocationOrigin origin, AllocationAlignment alignment) { if (object_size > kMaxLabObjectSize) { return new_space_->AllocateRawSynchronized(object_size, alignment, origin); } return AllocateInLAB(object_size, alignment); } } // namespace internal } // namespace v8 #endif // V8_HEAP_LOCAL_ALLOCATOR_INL_H_