%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµùÕ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream
// Copyright 2020 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_NEW_SPACES_INL_H_ #define V8_HEAP_NEW_SPACES_INL_H_ #include "src/base/sanitizer/msan.h" #include "src/common/globals.h" #include "src/heap/heap.h" #include "src/heap/new-spaces.h" #include "src/heap/spaces-inl.h" #include "src/objects/objects-inl.h" #include "src/objects/tagged-impl.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // SemiSpace bool SemiSpace::Contains(HeapObject o) const { BasicMemoryChunk* memory_chunk = BasicMemoryChunk::FromHeapObject(o); if (memory_chunk->IsLargePage()) return false; return id_ == kToSpace ? memory_chunk->IsToPage() : memory_chunk->IsFromPage(); } bool SemiSpace::Contains(Object o) const { return o.IsHeapObject() && Contains(HeapObject::cast(o)); } bool SemiSpace::ContainsSlow(Address a) const { for (const Page* p : *this) { if (p == BasicMemoryChunk::FromAddress(a)) return true; } return false; } // -------------------------------------------------------------------------- // NewSpace bool NewSpace::Contains(Object o) const { return o.IsHeapObject() && Contains(HeapObject::cast(o)); } bool NewSpace::Contains(HeapObject o) const { return BasicMemoryChunk::FromHeapObject(o)->InNewSpace(); } bool NewSpace::ContainsSlow(Address a) const { return from_space_.ContainsSlow(a) || to_space_.ContainsSlow(a); } bool NewSpace::ToSpaceContainsSlow(Address a) const { return to_space_.ContainsSlow(a); } bool NewSpace::ToSpaceContains(Object o) const { return to_space_.Contains(o); } bool NewSpace::FromSpaceContains(Object o) const { return from_space_.Contains(o); } // ----------------------------------------------------------------------------- // SemiSpaceObjectIterator HeapObject SemiSpaceObjectIterator::Next() { while (current_ != limit_) { if (Page::IsAlignedToPageSize(current_)) { Page* page = Page::FromAllocationAreaAddress(current_); page = page->next_page(); DCHECK(page); current_ = page->area_start(); if (current_ == limit_) return HeapObject(); } HeapObject object = HeapObject::FromAddress(current_); current_ += object.Size(); if (!object.IsFreeSpaceOrFiller()) { return object; } } return HeapObject(); } // ----------------------------------------------------------------------------- // NewSpace AllocationResult NewSpace::AllocateRaw(int size_in_bytes, AllocationAlignment alignment, AllocationOrigin origin) { DCHECK(!FLAG_single_generation); DCHECK(!FLAG_enable_third_party_heap); #if DEBUG VerifyTop(); #endif AllocationResult result; if (alignment != kWordAligned) { result = AllocateFastAligned(size_in_bytes, nullptr, alignment, origin); } else { result = AllocateFastUnaligned(size_in_bytes, origin); } if (!result.IsRetry()) { return result; } else { return AllocateRawSlow(size_in_bytes, alignment, origin); } } AllocationResult NewSpace::AllocateFastUnaligned(int size_in_bytes, AllocationOrigin origin) { if (!allocation_info_.CanIncrementTop(size_in_bytes)) { return AllocationResult::Retry(NEW_SPACE); } HeapObject obj = HeapObject::FromAddress(allocation_info_.IncrementTop(size_in_bytes)); DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); MSAN_ALLOCATED_UNINITIALIZED_MEMORY(obj.address(), size_in_bytes); if (FLAG_trace_allocations_origins) { UpdateAllocationOrigins(origin); } return obj; } AllocationResult NewSpace::AllocateFastAligned( int size_in_bytes, int* result_aligned_size_in_bytes, AllocationAlignment alignment, AllocationOrigin origin) { Address top = allocation_info_.top(); int filler_size = Heap::GetFillToAlign(top, alignment); int aligned_size_in_bytes = size_in_bytes + filler_size; if (!allocation_info_.CanIncrementTop(aligned_size_in_bytes)) { return AllocationResult::Retry(NEW_SPACE); } HeapObject obj = HeapObject::FromAddress( allocation_info_.IncrementTop(aligned_size_in_bytes)); if (result_aligned_size_in_bytes) *result_aligned_size_in_bytes = aligned_size_in_bytes; DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); if (filler_size > 0) { obj = Heap::PrecedeWithFiller(ReadOnlyRoots(heap()), obj, filler_size); } MSAN_ALLOCATED_UNINITIALIZED_MEMORY(obj.address(), size_in_bytes); if (FLAG_trace_allocations_origins) { UpdateAllocationOrigins(origin); } return obj; } V8_WARN_UNUSED_RESULT inline AllocationResult NewSpace::AllocateRawSynchronized( int size_in_bytes, AllocationAlignment alignment, AllocationOrigin origin) { base::MutexGuard guard(&mutex_); return AllocateRaw(size_in_bytes, alignment, origin); } } // namespace internal } // namespace v8 #endif // V8_HEAP_NEW_SPACES_INL_H_