%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµùÕ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream
// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Review notes: // // - The use of macros in these inline functions may seem superfluous // but it is absolutely needed to make sure gcc generates optimal // code. gcc is not happy when attempting to inline too deep. // #ifndef V8_OBJECTS_OBJECTS_INL_H_ #define V8_OBJECTS_OBJECTS_INL_H_ #include "src/base/bits.h" #include "src/base/memory.h" #include "src/base/numbers/double.h" #include "src/builtins/builtins.h" #include "src/common/external-pointer-inl.h" #include "src/common/globals.h" #include "src/handles/handles-inl.h" #include "src/heap/factory.h" #include "src/heap/heap-write-barrier-inl.h" #include "src/heap/read-only-heap-inl.h" #include "src/numbers/conversions-inl.h" #include "src/objects/bigint.h" #include "src/objects/heap-number-inl.h" #include "src/objects/heap-object.h" #include "src/objects/js-proxy-inl.h" // TODO(jkummerow): Drop. #include "src/objects/keys.h" #include "src/objects/literal-objects.h" #include "src/objects/lookup-inl.h" // TODO(jkummerow): Drop. #include "src/objects/objects.h" #include "src/objects/oddball-inl.h" #include "src/objects/property-details.h" #include "src/objects/property.h" #include "src/objects/regexp-match-info-inl.h" #include "src/objects/shared-function-info.h" #include "src/objects/slots-inl.h" #include "src/objects/smi-inl.h" #include "src/objects/tagged-field-inl.h" #include "src/objects/tagged-impl-inl.h" #include "src/objects/tagged-index.h" #include "src/objects/templates.h" // Has to be the last include (doesn't have include guards): #include "src/objects/object-macros.h" namespace v8 { namespace internal { PropertyDetails::PropertyDetails(Smi smi) { value_ = smi.value(); } Smi PropertyDetails::AsSmi() const { // Ensure the upper 2 bits have the same value by sign extending it. This is // necessary to be able to use the 31st bit of the property details. int value = value_ << 1; return Smi::FromInt(value >> 1); } int PropertyDetails::field_width_in_words() const { DCHECK_EQ(location(), kField); return 1; } DEF_GETTER(HeapObject, IsClassBoilerplate, bool) { return IsFixedArrayExact(cage_base); } bool Object::IsTaggedIndex() const { return IsSmi() && TaggedIndex::IsValid(TaggedIndex(ptr()).value()); } #define IS_TYPE_FUNCTION_DEF(type_) \ bool Object::Is##type_() const { \ return IsHeapObject() && HeapObject::cast(*this).Is##type_(); \ } \ bool Object::Is##type_(PtrComprCageBase cage_base) const { \ return IsHeapObject() && HeapObject::cast(*this).Is##type_(cage_base); \ } HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DEF) IS_TYPE_FUNCTION_DEF(HashTableBase) IS_TYPE_FUNCTION_DEF(SmallOrderedHashTable) IS_TYPE_FUNCTION_DEF(CodeT) #undef IS_TYPE_FUNCTION_DEF #define IS_TYPE_FUNCTION_DEF(Type, Value) \ bool Object::Is##Type(Isolate* isolate) const { \ return Is##Type(ReadOnlyRoots(isolate)); \ } \ bool Object::Is##Type(LocalIsolate* isolate) const { \ return Is##Type(ReadOnlyRoots(isolate)); \ } \ bool Object::Is##Type(ReadOnlyRoots roots) const { \ return *this == roots.Value(); \ } \ bool Object::Is##Type() const { \ return IsHeapObject() && HeapObject::cast(*this).Is##Type(); \ } \ bool HeapObject::Is##Type(Isolate* isolate) const { \ return Object::Is##Type(isolate); \ } \ bool HeapObject::Is##Type(LocalIsolate* isolate) const { \ return Object::Is##Type(isolate); \ } \ bool HeapObject::Is##Type(ReadOnlyRoots roots) const { \ return Object::Is##Type(roots); \ } \ bool HeapObject::Is##Type() const { return Is##Type(GetReadOnlyRoots()); } ODDBALL_LIST(IS_TYPE_FUNCTION_DEF) #undef IS_TYPE_FUNCTION_DEF bool Object::IsNullOrUndefined(Isolate* isolate) const { return IsNullOrUndefined(ReadOnlyRoots(isolate)); } bool Object::IsNullOrUndefined(ReadOnlyRoots roots) const { return IsNull(roots) || IsUndefined(roots); } bool Object::IsNullOrUndefined() const { return IsHeapObject() && HeapObject::cast(*this).IsNullOrUndefined(); } bool Object::IsZero() const { return *this == Smi::zero(); } bool Object::IsPublicSymbol() const { return IsSymbol() && !Symbol::cast(*this).is_private(); } bool Object::IsPrivateSymbol() const { return IsSymbol() && Symbol::cast(*this).is_private(); } bool Object::IsNoSharedNameSentinel() const { return *this == SharedFunctionInfo::kNoSharedNameSentinel; } bool HeapObject::IsNullOrUndefined(Isolate* isolate) const { return IsNullOrUndefined(ReadOnlyRoots(isolate)); } bool HeapObject::IsNullOrUndefined(ReadOnlyRoots roots) const { return Object::IsNullOrUndefined(roots); } bool HeapObject::IsNullOrUndefined() const { return IsNullOrUndefined(GetReadOnlyRoots()); } DEF_GETTER(HeapObject, IsCodeT, bool) { return V8_EXTERNAL_CODE_SPACE_BOOL ? IsCodeDataContainer(cage_base) : IsCode(cage_base); } DEF_GETTER(HeapObject, IsUniqueName, bool) { return IsInternalizedString(cage_base) || IsSymbol(cage_base); } DEF_GETTER(HeapObject, IsFunction, bool) { return IsJSFunctionOrBoundFunction(); } DEF_GETTER(HeapObject, IsCallable, bool) { return map(cage_base).is_callable(); } DEF_GETTER(HeapObject, IsCallableJSProxy, bool) { return IsCallable(cage_base) && IsJSProxy(cage_base); } DEF_GETTER(HeapObject, IsCallableApiObject, bool) { InstanceType type = map(cage_base).instance_type(); return IsCallable(cage_base) && (type == JS_API_OBJECT_TYPE || type == JS_SPECIAL_API_OBJECT_TYPE); } DEF_GETTER(HeapObject, IsNonNullForeign, bool) { return IsForeign(cage_base) && Foreign::cast(*this).foreign_address() != kNullAddress; } DEF_GETTER(HeapObject, IsConstructor, bool) { return map(cage_base).is_constructor(); } DEF_GETTER(HeapObject, IsSourceTextModuleInfo, bool) { return map(cage_base) == GetReadOnlyRoots(cage_base).module_info_map(); } DEF_GETTER(HeapObject, IsConsString, bool) { if (!IsString(cage_base)) return false; return StringShape(String::cast(*this).map(cage_base)).IsCons(); } DEF_GETTER(HeapObject, IsThinString, bool) { if (!IsString(cage_base)) return false; return StringShape(String::cast(*this).map(cage_base)).IsThin(); } DEF_GETTER(HeapObject, IsSlicedString, bool) { if (!IsString(cage_base)) return false; return StringShape(String::cast(*this).map(cage_base)).IsSliced(); } DEF_GETTER(HeapObject, IsSeqString, bool) { if (!IsString(cage_base)) return false; return StringShape(String::cast(*this).map(cage_base)).IsSequential(); } DEF_GETTER(HeapObject, IsSeqOneByteString, bool) { if (!IsString(cage_base)) return false; return StringShape(String::cast(*this).map(cage_base)).IsSequential() && String::cast(*this).IsOneByteRepresentation(cage_base); } DEF_GETTER(HeapObject, IsSeqTwoByteString, bool) { if (!IsString(cage_base)) return false; return StringShape(String::cast(*this).map(cage_base)).IsSequential() && String::cast(*this).IsTwoByteRepresentation(cage_base); } DEF_GETTER(HeapObject, IsExternalOneByteString, bool) { if (!IsString(cage_base)) return false; return StringShape(String::cast(*this).map(cage_base)).IsExternal() && String::cast(*this).IsOneByteRepresentation(cage_base); } DEF_GETTER(HeapObject, IsExternalTwoByteString, bool) { if (!IsString(cage_base)) return false; return StringShape(String::cast(*this).map(cage_base)).IsExternal() && String::cast(*this).IsTwoByteRepresentation(cage_base); } bool Object::IsNumber() const { if (IsSmi()) return true; HeapObject this_heap_object = HeapObject::cast(*this); PtrComprCageBase cage_base = GetPtrComprCageBase(this_heap_object); return this_heap_object.IsHeapNumber(cage_base); } bool Object::IsNumber(PtrComprCageBase cage_base) const { return IsSmi() || IsHeapNumber(cage_base); } bool Object::IsNumeric() const { if (IsSmi()) return true; HeapObject this_heap_object = HeapObject::cast(*this); PtrComprCageBase cage_base = GetPtrComprCageBase(this_heap_object); return this_heap_object.IsHeapNumber(cage_base) || this_heap_object.IsBigInt(cage_base); } bool Object::IsNumeric(PtrComprCageBase cage_base) const { return IsNumber(cage_base) || IsBigInt(cage_base); } DEF_GETTER(HeapObject, IsFreeSpaceOrFiller, bool) { InstanceType instance_type = map(cage_base).instance_type(); return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE; } DEF_GETTER(HeapObject, IsArrayList, bool) { ReadOnlyRoots roots = GetReadOnlyRoots(cage_base); return *this == roots.empty_fixed_array() || map(cage_base) == roots.array_list_map(); } DEF_GETTER(HeapObject, IsRegExpMatchInfo, bool) { return IsFixedArrayExact(cage_base); } DEF_GETTER(HeapObject, IsDeoptimizationData, bool) { // Must be a fixed array. if (!IsFixedArrayExact(cage_base)) return false; // There's no sure way to detect the difference between a fixed array and // a deoptimization data array. Since this is used for asserts we can // check that the length is zero or else the fixed size plus a multiple of // the entry size. int length = FixedArray::cast(*this).length(); if (length == 0) return true; length -= DeoptimizationData::kFirstDeoptEntryIndex; return length >= 0 && length % DeoptimizationData::kDeoptEntrySize == 0; } DEF_GETTER(HeapObject, IsHandlerTable, bool) { if (!IsFixedArrayExact(cage_base)) return false; // There's actually no way to see the difference between a fixed array and // a handler table array. return true; } DEF_GETTER(HeapObject, IsTemplateList, bool) { if (!IsFixedArrayExact(cage_base)) return false; // There's actually no way to see the difference between a fixed array and // a template list. if (FixedArray::cast(*this).length() < 1) return false; return true; } DEF_GETTER(HeapObject, IsDependentCode, bool) { if (!IsWeakFixedArray(cage_base)) return false; // There's actually no way to see the difference between a weak fixed array // and a dependent codes array. return true; } DEF_GETTER(HeapObject, IsOSROptimizedCodeCache, bool) { if (!IsWeakFixedArray(cage_base)) return false; // There's actually no way to see the difference between a weak fixed array // and a osr optimized code cache. return true; } DEF_GETTER(HeapObject, IsAbstractCode, bool) { return IsBytecodeArray(cage_base) || IsCode(cage_base); } DEF_GETTER(HeapObject, IsStringWrapper, bool) { return IsJSPrimitiveWrapper(cage_base) && JSPrimitiveWrapper::cast(*this).value().IsString(cage_base); } DEF_GETTER(HeapObject, IsBooleanWrapper, bool) { return IsJSPrimitiveWrapper(cage_base) && JSPrimitiveWrapper::cast(*this).value().IsBoolean(cage_base); } DEF_GETTER(HeapObject, IsScriptWrapper, bool) { return IsJSPrimitiveWrapper(cage_base) && JSPrimitiveWrapper::cast(*this).value().IsScript(cage_base); } DEF_GETTER(HeapObject, IsNumberWrapper, bool) { return IsJSPrimitiveWrapper(cage_base) && JSPrimitiveWrapper::cast(*this).value().IsNumber(cage_base); } DEF_GETTER(HeapObject, IsBigIntWrapper, bool) { return IsJSPrimitiveWrapper(cage_base) && JSPrimitiveWrapper::cast(*this).value().IsBigInt(cage_base); } DEF_GETTER(HeapObject, IsSymbolWrapper, bool) { return IsJSPrimitiveWrapper(cage_base) && JSPrimitiveWrapper::cast(*this).value().IsSymbol(cage_base); } DEF_GETTER(HeapObject, IsStringSet, bool) { return IsHashTable(cage_base); } DEF_GETTER(HeapObject, IsObjectHashSet, bool) { return IsHashTable(cage_base); } DEF_GETTER(HeapObject, IsCompilationCacheTable, bool) { return IsHashTable(cage_base); } DEF_GETTER(HeapObject, IsMapCache, bool) { return IsHashTable(cage_base); } DEF_GETTER(HeapObject, IsObjectHashTable, bool) { return IsHashTable(cage_base); } DEF_GETTER(HeapObject, IsHashTableBase, bool) { return IsHashTable(cage_base); } #if V8_ENABLE_WEBASSEMBLY DEF_GETTER(HeapObject, IsWasmExceptionPackage, bool) { // It is not possible to check for the existence of certain properties on the // underlying {JSReceiver} here because that requires calling handlified code. return IsJSReceiver(cage_base); } #endif // V8_ENABLE_WEBASSEMBLY bool Object::IsPrimitive() const { if (IsSmi()) return true; HeapObject this_heap_object = HeapObject::cast(*this); PtrComprCageBase cage_base = GetPtrComprCageBase(this_heap_object); return this_heap_object.map(cage_base).IsPrimitiveMap(); } bool Object::IsPrimitive(PtrComprCageBase cage_base) const { return IsSmi() || HeapObject::cast(*this).map(cage_base).IsPrimitiveMap(); } // static Maybe<bool> Object::IsArray(Handle<Object> object) { if (object->IsSmi()) return Just(false); Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object); if (heap_object->IsJSArray()) return Just(true); if (!heap_object->IsJSProxy()) return Just(false); return JSProxy::IsArray(Handle<JSProxy>::cast(object)); } DEF_GETTER(HeapObject, IsUndetectable, bool) { return map(cage_base).is_undetectable(); } DEF_GETTER(HeapObject, IsAccessCheckNeeded, bool) { if (IsJSGlobalProxy(cage_base)) { const JSGlobalProxy proxy = JSGlobalProxy::cast(*this); JSGlobalObject global = proxy.GetIsolate()->context().global_object(); return proxy.IsDetachedFrom(global); } return map(cage_base).is_access_check_needed(); } #define MAKE_STRUCT_PREDICATE(NAME, Name, name) \ bool Object::Is##Name() const { \ return IsHeapObject() && HeapObject::cast(*this).Is##Name(); \ } \ bool Object::Is##Name(PtrComprCageBase cage_base) const { \ return IsHeapObject() && HeapObject::cast(*this).Is##Name(cage_base); \ } STRUCT_LIST(MAKE_STRUCT_PREDICATE) #undef MAKE_STRUCT_PREDICATE double Object::Number() const { DCHECK(IsNumber()); return IsSmi() ? static_cast<double>(Smi(this->ptr()).value()) : HeapNumber::unchecked_cast(*this).value(); } // static bool Object::SameNumberValue(double value1, double value2) { // SameNumberValue(NaN, NaN) is true. if (value1 != value2) { return std::isnan(value1) && std::isnan(value2); } // SameNumberValue(0.0, -0.0) is false. return (std::signbit(value1) == std::signbit(value2)); } bool Object::IsNaN() const { return this->IsHeapNumber() && std::isnan(HeapNumber::cast(*this).value()); } bool Object::IsMinusZero() const { return this->IsHeapNumber() && i::IsMinusZero(HeapNumber::cast(*this).value()); } OBJECT_CONSTRUCTORS_IMPL(BigIntBase, PrimitiveHeapObject) OBJECT_CONSTRUCTORS_IMPL(BigInt, BigIntBase) OBJECT_CONSTRUCTORS_IMPL(FreshlyAllocatedBigInt, BigIntBase) // ------------------------------------ // Cast operations CAST_ACCESSOR(BigIntBase) CAST_ACCESSOR(BigInt) bool Object::HasValidElements() { // Dictionary is covered under FixedArray. ByteArray is used // for the JSTypedArray backing stores. return IsFixedArray() || IsFixedDoubleArray() || IsByteArray(); } bool Object::FilterKey(PropertyFilter filter) { DCHECK(!IsPropertyCell()); if (filter == PRIVATE_NAMES_ONLY) { if (!IsSymbol()) return true; return !Symbol::cast(*this).is_private_name(); } else if (IsSymbol()) { if (filter & SKIP_SYMBOLS) return true; if (Symbol::cast(*this).is_private()) return true; } else { if (filter & SKIP_STRINGS) return true; } return false; } Representation Object::OptimalRepresentation(PtrComprCageBase cage_base) const { if (IsSmi()) { return Representation::Smi(); } HeapObject heap_object = HeapObject::cast(*this); if (heap_object.IsHeapNumber(cage_base)) { return Representation::Double(); } else if (heap_object.IsUninitialized( heap_object.GetReadOnlyRoots(cage_base))) { return Representation::None(); } return Representation::HeapObject(); } ElementsKind Object::OptimalElementsKind(PtrComprCageBase cage_base) const { if (IsSmi()) return PACKED_SMI_ELEMENTS; if (IsNumber(cage_base)) return PACKED_DOUBLE_ELEMENTS; return PACKED_ELEMENTS; } bool Object::FitsRepresentation(Representation representation, bool allow_coercion) const { if (representation.IsSmi()) { return IsSmi(); } else if (representation.IsDouble()) { return allow_coercion ? IsNumber() : IsHeapNumber(); } else if (representation.IsHeapObject()) { return IsHeapObject(); } else if (representation.IsNone()) { return false; } return true; } bool Object::ToUint32(uint32_t* value) const { if (IsSmi()) { int num = Smi::ToInt(*this); if (num < 0) return false; *value = static_cast<uint32_t>(num); return true; } if (IsHeapNumber()) { double num = HeapNumber::cast(*this).value(); return DoubleToUint32IfEqualToSelf(num, value); } return false; } // static MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate, Handle<Object> object, const char* method_name) { if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object); return ToObjectImpl(isolate, object, method_name); } // static MaybeHandle<Name> Object::ToName(Isolate* isolate, Handle<Object> input) { if (input->IsName()) return Handle<Name>::cast(input); return ConvertToName(isolate, input); } // static MaybeHandle<Object> Object::ToPropertyKey(Isolate* isolate, Handle<Object> value) { if (value->IsSmi() || HeapObject::cast(*value).IsName()) return value; return ConvertToPropertyKey(isolate, value); } // static MaybeHandle<Object> Object::ToPrimitive(Handle<Object> input, ToPrimitiveHint hint) { if (input->IsPrimitive()) return input; return JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input), hint); } // static MaybeHandle<Object> Object::ToNumber(Isolate* isolate, Handle<Object> input) { if (input->IsNumber()) return input; // Shortcut. return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumber); } // static MaybeHandle<Object> Object::ToNumeric(Isolate* isolate, Handle<Object> input) { if (input->IsNumber() || input->IsBigInt()) return input; // Shortcut. return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumeric); } // static MaybeHandle<Object> Object::ToInteger(Isolate* isolate, Handle<Object> input) { if (input->IsSmi()) return input; return ConvertToInteger(isolate, input); } // static MaybeHandle<Object> Object::ToInt32(Isolate* isolate, Handle<Object> input) { if (input->IsSmi()) return input; return ConvertToInt32(isolate, input); } // static MaybeHandle<Object> Object::ToUint32(Isolate* isolate, Handle<Object> input) { if (input->IsSmi()) return handle(Smi::cast(*input).ToUint32Smi(), isolate); return ConvertToUint32(isolate, input); } // static MaybeHandle<String> Object::ToString(Isolate* isolate, Handle<Object> input) { if (input->IsString()) return Handle<String>::cast(input); return ConvertToString(isolate, input); } // static MaybeHandle<Object> Object::ToLength(Isolate* isolate, Handle<Object> input) { if (input->IsSmi()) { int value = std::max(Smi::ToInt(*input), 0); return handle(Smi::FromInt(value), isolate); } return ConvertToLength(isolate, input); } // static MaybeHandle<Object> Object::ToIndex(Isolate* isolate, Handle<Object> input, MessageTemplate error_index) { if (input->IsSmi() && Smi::ToInt(*input) >= 0) return input; return ConvertToIndex(isolate, input, error_index); } MaybeHandle<Object> Object::GetProperty(Isolate* isolate, Handle<Object> object, Handle<Name> name) { LookupIterator it(isolate, object, name); if (!it.IsFound()) return it.factory()->undefined_value(); return GetProperty(&it); } MaybeHandle<Object> Object::GetElement(Isolate* isolate, Handle<Object> object, uint32_t index) { LookupIterator it(isolate, object, index); if (!it.IsFound()) return it.factory()->undefined_value(); return GetProperty(&it); } MaybeHandle<Object> Object::SetElement(Isolate* isolate, Handle<Object> object, uint32_t index, Handle<Object> value, ShouldThrow should_throw) { LookupIterator it(isolate, object, index); MAYBE_RETURN_NULL( SetProperty(&it, value, StoreOrigin::kMaybeKeyed, Just(should_throw))); return value; } void Object::InitExternalPointerField(size_t offset, Isolate* isolate) { i::InitExternalPointerField(field_address(offset), isolate); } void Object::InitExternalPointerField(size_t offset, Isolate* isolate, Address value, ExternalPointerTag tag) { i::InitExternalPointerField(field_address(offset), isolate, value, tag); } Address Object::ReadExternalPointerField(size_t offset, Isolate* isolate, ExternalPointerTag tag) const { return i::ReadExternalPointerField(field_address(offset), isolate, tag); } void Object::WriteExternalPointerField(size_t offset, Isolate* isolate, Address value, ExternalPointerTag tag) { i::WriteExternalPointerField(field_address(offset), isolate, value, tag); } ObjectSlot HeapObject::RawField(int byte_offset) const { return ObjectSlot(field_address(byte_offset)); } MaybeObjectSlot HeapObject::RawMaybeWeakField(int byte_offset) const { return MaybeObjectSlot(field_address(byte_offset)); } MapWord MapWord::FromMap(const Map map) { DCHECK(map.is_null() || !MapWord::IsPacked(map.ptr())); #ifdef V8_MAP_PACKING return MapWord(Pack(map.ptr())); #else return MapWord(map.ptr()); #endif } Map MapWord::ToMap() const { #ifdef V8_MAP_PACKING return Map::unchecked_cast(Object(Unpack(value_))); #else return Map::unchecked_cast(Object(value_)); #endif } bool MapWord::IsForwardingAddress() const { return (value_ & kForwardingTagMask) == kForwardingTag; } MapWord MapWord::FromForwardingAddress(HeapObject object) { return MapWord(object.ptr() - kHeapObjectTag); } HeapObject MapWord::ToForwardingAddress() { DCHECK(IsForwardingAddress()); return HeapObject::FromAddress(value_); } #ifdef VERIFY_HEAP void HeapObject::VerifyObjectField(Isolate* isolate, int offset) { VerifyPointer(isolate, TaggedField<Object>::load(isolate, *this, offset)); STATIC_ASSERT(!COMPRESS_POINTERS_BOOL || kTaggedSize == kInt32Size); } void HeapObject::VerifyMaybeObjectField(Isolate* isolate, int offset) { MaybeObject::VerifyMaybeObjectPointer( isolate, TaggedField<MaybeObject>::load(isolate, *this, offset)); STATIC_ASSERT(!COMPRESS_POINTERS_BOOL || kTaggedSize == kInt32Size); } void HeapObject::VerifySmiField(int offset) { CHECK(TaggedField<Object>::load(*this, offset).IsSmi()); STATIC_ASSERT(!COMPRESS_POINTERS_BOOL || kTaggedSize == kInt32Size); } #endif ReadOnlyRoots HeapObject::GetReadOnlyRoots() const { return ReadOnlyHeap::GetReadOnlyRoots(*this); } ReadOnlyRoots HeapObject::GetReadOnlyRoots(PtrComprCageBase cage_base) const { #ifdef V8_COMPRESS_POINTERS_IN_ISOLATE_CAGE DCHECK_NE(cage_base.address(), 0); return ReadOnlyRoots(Isolate::FromRootAddress(cage_base.address())); #else return GetReadOnlyRoots(); #endif } DEF_GETTER(HeapObject, map, Map) { return map_word(cage_base, kRelaxedLoad).ToMap(); } void HeapObject::set_map(Map value) { #ifdef VERIFY_HEAP if (FLAG_verify_heap && !value.is_null()) { GetHeapFromWritableObject(*this)->VerifyObjectLayoutChange(*this, value); } #endif set_map_word(MapWord::FromMap(value), kRelaxedStore); #ifndef V8_DISABLE_WRITE_BARRIERS if (!value.is_null()) { // TODO(1600) We are passing kNullAddress as a slot because maps can never // be on an evacuation candidate. WriteBarrier::Marking(*this, ObjectSlot(kNullAddress), value); } #endif } DEF_ACQUIRE_GETTER(HeapObject, map, Map) { return map_word(cage_base, kAcquireLoad).ToMap(); } void HeapObject::set_map(Map value, ReleaseStoreTag tag) { #ifdef VERIFY_HEAP if (FLAG_verify_heap && !value.is_null()) { GetHeapFromWritableObject(*this)->VerifyObjectLayoutChange(*this, value); } #endif set_map_word(MapWord::FromMap(value), tag); #ifndef V8_DISABLE_WRITE_BARRIERS if (!value.is_null()) { // TODO(1600) We are passing kNullAddress as a slot because maps can never // be on an evacuation candidate. WriteBarrier::Marking(*this, ObjectSlot(kNullAddress), value); } #endif } // Unsafe accessor omitting write barrier. void HeapObject::set_map_no_write_barrier(Map value) { #ifdef VERIFY_HEAP if (FLAG_verify_heap && !value.is_null()) { GetHeapFromWritableObject(*this)->VerifyObjectLayoutChange(*this, value); } #endif set_map_word(MapWord::FromMap(value), kRelaxedStore); } void HeapObject::set_map_after_allocation(Map value, WriteBarrierMode mode) { MapWord mapword = MapWord::FromMap(value); set_map_word(mapword, kRelaxedStore); #ifndef V8_DISABLE_WRITE_BARRIERS if (mode != SKIP_WRITE_BARRIER) { DCHECK(!value.is_null()); // TODO(1600) We are passing kNullAddress as a slot because maps can never // be on an evacuation candidate. WriteBarrier::Marking(*this, ObjectSlot(kNullAddress), value); } #endif } ObjectSlot HeapObject::map_slot() const { return ObjectSlot(MapField::address(*this)); } DEF_RELAXED_GETTER(HeapObject, map_word, MapWord) { return MapField::Relaxed_Load_Map_Word(cage_base, *this); } void HeapObject::set_map_word(MapWord map_word, RelaxedStoreTag) { MapField::Relaxed_Store_Map_Word(*this, map_word); } DEF_ACQUIRE_GETTER(HeapObject, map_word, MapWord) { return MapField::Acquire_Load_No_Unpack(cage_base, *this); } void HeapObject::set_map_word(MapWord map_word, ReleaseStoreTag) { MapField::Release_Store_Map_Word(*this, map_word); } bool HeapObject::release_compare_and_swap_map_word(MapWord old_map_word, MapWord new_map_word) { Tagged_t result = MapField::Release_CompareAndSwap(*this, old_map_word, new_map_word); return result == static_cast<Tagged_t>(old_map_word.ptr()); } int HeapObject::Size() const { return SizeFromMap(map()); } inline bool IsSpecialReceiverInstanceType(InstanceType instance_type) { return instance_type <= LAST_SPECIAL_RECEIVER_TYPE; } // This should be in objects/map-inl.h, but can't, because of a cyclic // dependency. bool Map::IsSpecialReceiverMap() const { bool result = IsSpecialReceiverInstanceType(instance_type()); DCHECK_IMPLIES(!result, !has_named_interceptor() && !is_access_check_needed()); return result; } inline bool IsCustomElementsReceiverInstanceType(InstanceType instance_type) { return instance_type <= LAST_CUSTOM_ELEMENTS_RECEIVER; } // This should be in objects/map-inl.h, but can't, because of a cyclic // dependency. bool Map::IsCustomElementsReceiverMap() const { return IsCustomElementsReceiverInstanceType(instance_type()); } bool Object::ToArrayLength(uint32_t* index) const { return Object::ToUint32(index); } bool Object::ToArrayIndex(uint32_t* index) const { return Object::ToUint32(index) && *index != kMaxUInt32; } bool Object::ToIntegerIndex(size_t* index) const { if (IsSmi()) { int num = Smi::ToInt(*this); if (num < 0) return false; *index = static_cast<size_t>(num); return true; } if (IsHeapNumber()) { double num = HeapNumber::cast(*this).value(); if (!(num >= 0)) return false; // Negation to catch NaNs. constexpr double max = std::min(kMaxSafeInteger, // The maximum size_t is reserved as "invalid" sentinel. static_cast<double>(std::numeric_limits<size_t>::max() - 1)); if (num > max) return false; size_t result = static_cast<size_t>(num); if (num != result) return false; // Conversion lost fractional precision. *index = result; return true; } return false; } WriteBarrierMode HeapObject::GetWriteBarrierMode( const DisallowGarbageCollection& promise) { return GetWriteBarrierModeForObject(*this, &promise); } // static AllocationAlignment HeapObject::RequiredAlignment(Map map) { // TODO(bmeurer, v8:4153): We should think about requiring double alignment // in general for ByteArray, since they are used as backing store for typed // arrays now. #ifdef V8_COMPRESS_POINTERS // TODO(ishell, v8:8875): Consider using aligned allocations once the // allocation alignment inconsistency is fixed. For now we keep using // unaligned access since both x64 and arm64 architectures (where pointer // compression is supported) allow unaligned access to doubles and full words. #endif // V8_COMPRESS_POINTERS #ifdef V8_HOST_ARCH_32_BIT int instance_type = map.instance_type(); if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) return kDoubleAligned; if (instance_type == HEAP_NUMBER_TYPE) return kDoubleUnaligned; #endif // V8_HOST_ARCH_32_BIT return kWordAligned; } Address HeapObject::GetFieldAddress(int field_offset) const { return field_address(field_offset); } // static Maybe<bool> Object::GreaterThan(Isolate* isolate, Handle<Object> x, Handle<Object> y) { Maybe<ComparisonResult> result = Compare(isolate, x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kGreaterThan: return Just(true); case ComparisonResult::kLessThan: case ComparisonResult::kEqual: case ComparisonResult::kUndefined: return Just(false); } } return Nothing<bool>(); } // static Maybe<bool> Object::GreaterThanOrEqual(Isolate* isolate, Handle<Object> x, Handle<Object> y) { Maybe<ComparisonResult> result = Compare(isolate, x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: return Just(true); case ComparisonResult::kLessThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing<bool>(); } // static Maybe<bool> Object::LessThan(Isolate* isolate, Handle<Object> x, Handle<Object> y) { Maybe<ComparisonResult> result = Compare(isolate, x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kLessThan: return Just(true); case ComparisonResult::kEqual: case ComparisonResult::kGreaterThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing<bool>(); } // static Maybe<bool> Object::LessThanOrEqual(Isolate* isolate, Handle<Object> x, Handle<Object> y) { Maybe<ComparisonResult> result = Compare(isolate, x, y); if (result.IsJust()) { switch (result.FromJust()) { case ComparisonResult::kEqual: case ComparisonResult::kLessThan: return Just(true); case ComparisonResult::kGreaterThan: case ComparisonResult::kUndefined: return Just(false); } } return Nothing<bool>(); } MaybeHandle<Object> Object::GetPropertyOrElement(Isolate* isolate, Handle<Object> object, Handle<Name> name) { PropertyKey key(isolate, name); LookupIterator it(isolate, object, key); return GetProperty(&it); } MaybeHandle<Object> Object::SetPropertyOrElement( Isolate* isolate, Handle<Object> object, Handle<Name> name, Handle<Object> value, Maybe<ShouldThrow> should_throw, StoreOrigin store_origin) { PropertyKey key(isolate, name); LookupIterator it(isolate, object, key); MAYBE_RETURN_NULL(SetProperty(&it, value, store_origin, should_throw)); return value; } MaybeHandle<Object> Object::GetPropertyOrElement(Handle<Object> receiver, Handle<Name> name, Handle<JSReceiver> holder) { Isolate* isolate = holder->GetIsolate(); PropertyKey key(isolate, name); LookupIterator it(isolate, receiver, key, holder); return GetProperty(&it); } // static Object Object::GetSimpleHash(Object object) { DisallowGarbageCollection no_gc; if (object.IsSmi()) { uint32_t hash = ComputeUnseededHash(Smi::ToInt(object)); return Smi::FromInt(hash & Smi::kMaxValue); } if (object.IsHeapNumber()) { double num = HeapNumber::cast(object).value(); if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue); // Use ComputeUnseededHash for all values in Signed32 range, including -0, // which is considered equal to 0 because collections use SameValueZero. uint32_t hash; // Check range before conversion to avoid undefined behavior. if (num >= kMinInt && num <= kMaxInt && FastI2D(FastD2I(num)) == num) { hash = ComputeUnseededHash(FastD2I(num)); } else { hash = ComputeLongHash(base::double_to_uint64(num)); } return Smi::FromInt(hash & Smi::kMaxValue); } if (object.IsName()) { uint32_t hash = Name::cast(object).EnsureHash(); return Smi::FromInt(hash); } if (object.IsOddball()) { uint32_t hash = Oddball::cast(object).to_string().EnsureHash(); return Smi::FromInt(hash); } if (object.IsBigInt()) { uint32_t hash = BigInt::cast(object).Hash(); return Smi::FromInt(hash & Smi::kMaxValue); } if (object.IsSharedFunctionInfo()) { uint32_t hash = SharedFunctionInfo::cast(object).Hash(); return Smi::FromInt(hash & Smi::kMaxValue); } DCHECK(object.IsJSReceiver()); return object; } Object Object::GetHash() { DisallowGarbageCollection no_gc; Object hash = GetSimpleHash(*this); if (hash.IsSmi()) return hash; DCHECK(IsJSReceiver()); JSReceiver receiver = JSReceiver::cast(*this); return receiver.GetIdentityHash(); } Handle<Object> ObjectHashTableShape::AsHandle(Handle<Object> key) { return key; } Relocatable::Relocatable(Isolate* isolate) { isolate_ = isolate; prev_ = isolate->relocatable_top(); isolate->set_relocatable_top(this); } Relocatable::~Relocatable() { DCHECK_EQ(isolate_->relocatable_top(), this); isolate_->set_relocatable_top(prev_); } // Predictably converts HeapObject or Address to uint32 by calculating // offset of the address in respective MemoryChunk. static inline uint32_t ObjectAddressForHashing(Address object) { uint32_t value = static_cast<uint32_t>(object); return value & kPageAlignmentMask; } static inline Handle<Object> MakeEntryPair(Isolate* isolate, size_t index, Handle<Object> value) { Handle<Object> key = isolate->factory()->SizeToString(index); Handle<FixedArray> entry_storage = isolate->factory()->NewFixedArray(2); { entry_storage->set(0, *key, SKIP_WRITE_BARRIER); entry_storage->set(1, *value, SKIP_WRITE_BARRIER); } return isolate->factory()->NewJSArrayWithElements(entry_storage, PACKED_ELEMENTS, 2); } static inline Handle<Object> MakeEntryPair(Isolate* isolate, Handle<Object> key, Handle<Object> value) { Handle<FixedArray> entry_storage = isolate->factory()->NewFixedArray(2); { entry_storage->set(0, *key, SKIP_WRITE_BARRIER); entry_storage->set(1, *value, SKIP_WRITE_BARRIER); } return isolate->factory()->NewJSArrayWithElements(entry_storage, PACKED_ELEMENTS, 2); } FreshlyAllocatedBigInt FreshlyAllocatedBigInt::cast(Object object) { SLOW_DCHECK(object.IsBigInt()); return FreshlyAllocatedBigInt(object.ptr()); } } // namespace internal } // namespace v8 #include "src/objects/object-macros-undef.h" #endif // V8_OBJECTS_OBJECTS_INL_H_