%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµùÕ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream
// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_WASM_BASELINE_MIPS64_LIFTOFF_ASSEMBLER_MIPS64_H_ #define V8_WASM_BASELINE_MIPS64_LIFTOFF_ASSEMBLER_MIPS64_H_ #include "src/base/platform/wrappers.h" #include "src/codegen/machine-type.h" #include "src/heap/memory-chunk.h" #include "src/wasm/baseline/liftoff-assembler.h" #include "src/wasm/wasm-objects.h" namespace v8 { namespace internal { namespace wasm { namespace liftoff { inline constexpr Condition ToCondition(LiftoffCondition liftoff_cond) { switch (liftoff_cond) { case kEqual: return eq; case kUnequal: return ne; case kSignedLessThan: return lt; case kSignedLessEqual: return le; case kSignedGreaterThan: return gt; case kSignedGreaterEqual: return ge; case kUnsignedLessThan: return ult; case kUnsignedLessEqual: return ule; case kUnsignedGreaterThan: return ugt; case kUnsignedGreaterEqual: return uge; } } // Liftoff Frames. // // slot Frame // +--------------------+--------------------------- // n+4 | optional padding slot to keep the stack 16 byte aligned. // n+3 | parameter n | // ... | ... | // 4 | parameter 1 | or parameter 2 // 3 | parameter 0 | or parameter 1 // 2 | (result address) | or parameter 0 // -----+--------------------+--------------------------- // 1 | return addr (ra) | // 0 | previous frame (fp)| // -----+--------------------+ <-- frame ptr (fp) // -1 | 0xa: WASM | // -2 | instance | // -----+--------------------+--------------------------- // -3 | slot 0 | ^ // -4 | slot 1 | | // | | Frame slots // | | | // | | v // | optional padding slot to keep the stack 16 byte aligned. // -----+--------------------+ <-- stack ptr (sp) // // fp-8 holds the stack marker, fp-16 is the instance parameter. constexpr int kInstanceOffset = 16; inline MemOperand GetStackSlot(int offset) { return MemOperand(fp, -offset); } inline MemOperand GetInstanceOperand() { return GetStackSlot(kInstanceOffset); } template <typename T> inline MemOperand GetMemOp(LiftoffAssembler* assm, Register addr, Register offset, T offset_imm) { if (is_int32(offset_imm)) { int32_t offset_imm32 = static_cast<int32_t>(offset_imm); if (offset == no_reg) return MemOperand(addr, offset_imm32); assm->daddu(kScratchReg, addr, offset); return MemOperand(kScratchReg, offset_imm32); } // Offset immediate does not fit in 31 bits. assm->li(kScratchReg, offset_imm); assm->daddu(kScratchReg, kScratchReg, addr); if (offset != no_reg) { assm->daddu(kScratchReg, kScratchReg, offset); } return MemOperand(kScratchReg, 0); } inline void Load(LiftoffAssembler* assm, LiftoffRegister dst, MemOperand src, ValueKind kind) { switch (kind) { case kI32: assm->Lw(dst.gp(), src); break; case kI64: case kRef: case kOptRef: case kRtt: case kRttWithDepth: assm->Ld(dst.gp(), src); break; case kF32: assm->Lwc1(dst.fp(), src); break; case kF64: assm->Ldc1(dst.fp(), src); break; case kS128: assm->ld_b(dst.fp().toW(), src); break; default: UNREACHABLE(); } } inline void Store(LiftoffAssembler* assm, Register base, int32_t offset, LiftoffRegister src, ValueKind kind) { MemOperand dst(base, offset); switch (kind) { case kI32: assm->Usw(src.gp(), dst); break; case kI64: case kOptRef: case kRef: case kRtt: case kRttWithDepth: assm->Usd(src.gp(), dst); break; case kF32: assm->Uswc1(src.fp(), dst, t8); break; case kF64: assm->Usdc1(src.fp(), dst, t8); break; case kS128: assm->st_b(src.fp().toW(), dst); break; default: UNREACHABLE(); } } inline void push(LiftoffAssembler* assm, LiftoffRegister reg, ValueKind kind) { switch (kind) { case kI32: assm->daddiu(sp, sp, -kSystemPointerSize); assm->sw(reg.gp(), MemOperand(sp, 0)); break; case kI64: case kOptRef: case kRef: case kRtt: assm->push(reg.gp()); break; case kF32: assm->daddiu(sp, sp, -kSystemPointerSize); assm->swc1(reg.fp(), MemOperand(sp, 0)); break; case kF64: assm->daddiu(sp, sp, -kSystemPointerSize); assm->Sdc1(reg.fp(), MemOperand(sp, 0)); break; case kS128: assm->daddiu(sp, sp, -kSystemPointerSize * 2); assm->st_b(reg.fp().toW(), MemOperand(sp, 0)); break; default: UNREACHABLE(); } } #if defined(V8_TARGET_BIG_ENDIAN) inline void ChangeEndiannessLoad(LiftoffAssembler* assm, LiftoffRegister dst, LoadType type, LiftoffRegList pinned) { bool is_float = false; LiftoffRegister tmp = dst; switch (type.value()) { case LoadType::kI64Load8U: case LoadType::kI64Load8S: case LoadType::kI32Load8U: case LoadType::kI32Load8S: // No need to change endianness for byte size. return; case LoadType::kF32Load: is_float = true; tmp = assm->GetUnusedRegister(kGpReg, pinned); assm->emit_type_conversion(kExprI32ReinterpretF32, tmp, dst); V8_FALLTHROUGH; case LoadType::kI64Load32U: assm->TurboAssembler::ByteSwapUnsigned(tmp.gp(), tmp.gp(), 4); break; case LoadType::kI32Load: case LoadType::kI64Load32S: assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 4); break; case LoadType::kI32Load16S: case LoadType::kI64Load16S: assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 2); break; case LoadType::kI32Load16U: case LoadType::kI64Load16U: assm->TurboAssembler::ByteSwapUnsigned(tmp.gp(), tmp.gp(), 2); break; case LoadType::kF64Load: is_float = true; tmp = assm->GetUnusedRegister(kGpReg, pinned); assm->emit_type_conversion(kExprI64ReinterpretF64, tmp, dst); V8_FALLTHROUGH; case LoadType::kI64Load: assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 8); break; default: UNREACHABLE(); } if (is_float) { switch (type.value()) { case LoadType::kF32Load: assm->emit_type_conversion(kExprF32ReinterpretI32, dst, tmp); break; case LoadType::kF64Load: assm->emit_type_conversion(kExprF64ReinterpretI64, dst, tmp); break; default: UNREACHABLE(); } } } inline void ChangeEndiannessStore(LiftoffAssembler* assm, LiftoffRegister src, StoreType type, LiftoffRegList pinned) { bool is_float = false; LiftoffRegister tmp = src; switch (type.value()) { case StoreType::kI64Store8: case StoreType::kI32Store8: // No need to change endianness for byte size. return; case StoreType::kF32Store: is_float = true; tmp = assm->GetUnusedRegister(kGpReg, pinned); assm->emit_type_conversion(kExprI32ReinterpretF32, tmp, src); V8_FALLTHROUGH; case StoreType::kI32Store: assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 4); break; case StoreType::kI32Store16: assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 2); break; case StoreType::kF64Store: is_float = true; tmp = assm->GetUnusedRegister(kGpReg, pinned); assm->emit_type_conversion(kExprI64ReinterpretF64, tmp, src); V8_FALLTHROUGH; case StoreType::kI64Store: assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 8); break; case StoreType::kI64Store32: assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 4); break; case StoreType::kI64Store16: assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 2); break; default: UNREACHABLE(); } if (is_float) { switch (type.value()) { case StoreType::kF32Store: assm->emit_type_conversion(kExprF32ReinterpretI32, src, tmp); break; case StoreType::kF64Store: assm->emit_type_conversion(kExprF64ReinterpretI64, src, tmp); break; default: UNREACHABLE(); } } } #endif // V8_TARGET_BIG_ENDIAN } // namespace liftoff int LiftoffAssembler::PrepareStackFrame() { int offset = pc_offset(); // When the frame size is bigger than 4KB, we need seven instructions for // stack checking, so we reserve space for this case. daddiu(sp, sp, 0); nop(); nop(); nop(); nop(); nop(); nop(); return offset; } void LiftoffAssembler::PrepareTailCall(int num_callee_stack_params, int stack_param_delta) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); // Push the return address and frame pointer to complete the stack frame. Ld(scratch, MemOperand(fp, 8)); Push(scratch); Ld(scratch, MemOperand(fp, 0)); Push(scratch); // Shift the whole frame upwards. int slot_count = num_callee_stack_params + 2; for (int i = slot_count - 1; i >= 0; --i) { Ld(scratch, MemOperand(sp, i * 8)); Sd(scratch, MemOperand(fp, (i - stack_param_delta) * 8)); } // Set the new stack and frame pointer. daddiu(sp, fp, -stack_param_delta * 8); Pop(ra, fp); } void LiftoffAssembler::AlignFrameSize() {} void LiftoffAssembler::PatchPrepareStackFrame( int offset, SafepointTableBuilder* safepoint_table_builder) { // The frame_size includes the frame marker and the instance slot. Both are // pushed as part of frame construction, so we don't need to allocate memory // for them anymore. int frame_size = GetTotalFrameSize() - 2 * kSystemPointerSize; // We can't run out of space, just pass anything big enough to not cause the // assembler to try to grow the buffer. constexpr int kAvailableSpace = 256; TurboAssembler patching_assembler( nullptr, AssemblerOptions{}, CodeObjectRequired::kNo, ExternalAssemblerBuffer(buffer_start_ + offset, kAvailableSpace)); if (V8_LIKELY(frame_size < 4 * KB)) { // This is the standard case for small frames: just subtract from SP and be // done with it. patching_assembler.Daddu(sp, sp, Operand(-frame_size)); return; } // The frame size is bigger than 4KB, so we might overflow the available stack // space if we first allocate the frame and then do the stack check (we will // need some remaining stack space for throwing the exception). That's why we // check the available stack space before we allocate the frame. To do this we // replace the {__ Daddu(sp, sp, -frame_size)} with a jump to OOL code that // does this "extended stack check". // // The OOL code can simply be generated here with the normal assembler, // because all other code generation, including OOL code, has already finished // when {PatchPrepareStackFrame} is called. The function prologue then jumps // to the current {pc_offset()} to execute the OOL code for allocating the // large frame. // Emit the unconditional branch in the function prologue (from {offset} to // {pc_offset()}). int imm32 = pc_offset() - offset - 3 * kInstrSize; patching_assembler.BranchLong(imm32); // If the frame is bigger than the stack, we throw the stack overflow // exception unconditionally. Thereby we can avoid the integer overflow // check in the condition code. RecordComment("OOL: stack check for large frame"); Label continuation; if (frame_size < FLAG_stack_size * 1024) { Register stack_limit = kScratchReg; Ld(stack_limit, FieldMemOperand(kWasmInstanceRegister, WasmInstanceObject::kRealStackLimitAddressOffset)); Ld(stack_limit, MemOperand(stack_limit)); Daddu(stack_limit, stack_limit, Operand(frame_size)); Branch(&continuation, uge, sp, Operand(stack_limit)); } Call(wasm::WasmCode::kWasmStackOverflow, RelocInfo::WASM_STUB_CALL); // The call will not return; just define an empty safepoint. safepoint_table_builder->DefineSafepoint(this); if (FLAG_debug_code) stop(); bind(&continuation); // Now allocate the stack space. Note that this might do more than just // decrementing the SP; Daddu(sp, sp, Operand(-frame_size)); // Jump back to the start of the function, from {pc_offset()} to // right after the reserved space for the {__ Daddu(sp, sp, -framesize)} // (which is a Branch now). int func_start_offset = offset + 7 * kInstrSize; imm32 = func_start_offset - pc_offset() - 3 * kInstrSize; BranchLong(imm32); } void LiftoffAssembler::FinishCode() {} void LiftoffAssembler::AbortCompilation() {} // static constexpr int LiftoffAssembler::StaticStackFrameSize() { return liftoff::kInstanceOffset; } int LiftoffAssembler::SlotSizeForType(ValueKind kind) { switch (kind) { case kS128: return element_size_bytes(kind); default: return kStackSlotSize; } } bool LiftoffAssembler::NeedsAlignment(ValueKind kind) { return kind == kS128 || is_reference(kind); } void LiftoffAssembler::LoadConstant(LiftoffRegister reg, WasmValue value, RelocInfo::Mode rmode) { switch (value.type().kind()) { case kI32: TurboAssembler::li(reg.gp(), Operand(value.to_i32(), rmode)); break; case kI64: TurboAssembler::li(reg.gp(), Operand(value.to_i64(), rmode)); break; case kF32: TurboAssembler::Move(reg.fp(), value.to_f32_boxed().get_bits()); break; case kF64: TurboAssembler::Move(reg.fp(), value.to_f64_boxed().get_bits()); break; default: UNREACHABLE(); } } void LiftoffAssembler::LoadInstanceFromFrame(Register dst) { Ld(dst, liftoff::GetInstanceOperand()); } void LiftoffAssembler::LoadFromInstance(Register dst, Register instance, int offset, int size) { DCHECK_LE(0, offset); switch (size) { case 1: Lb(dst, MemOperand(instance, offset)); break; case 4: Lw(dst, MemOperand(instance, offset)); break; case 8: Ld(dst, MemOperand(instance, offset)); break; default: UNIMPLEMENTED(); } } void LiftoffAssembler::LoadTaggedPointerFromInstance(Register dst, Register instance, int32_t offset) { STATIC_ASSERT(kTaggedSize == kSystemPointerSize); Ld(dst, MemOperand(instance, offset)); } void LiftoffAssembler::SpillInstance(Register instance) { Sd(instance, liftoff::GetInstanceOperand()); } void LiftoffAssembler::ResetOSRTarget() {} void LiftoffAssembler::FillInstanceInto(Register dst) { Ld(dst, liftoff::GetInstanceOperand()); } void LiftoffAssembler::LoadTaggedPointer(Register dst, Register src_addr, Register offset_reg, int32_t offset_imm, LiftoffRegList pinned) { STATIC_ASSERT(kTaggedSize == kInt64Size); MemOperand src_op = liftoff::GetMemOp(this, src_addr, offset_reg, offset_imm); Ld(dst, src_op); } void LiftoffAssembler::LoadFullPointer(Register dst, Register src_addr, int32_t offset_imm) { MemOperand src_op = liftoff::GetMemOp(this, src_addr, no_reg, offset_imm); Ld(dst, src_op); } void LiftoffAssembler::StoreTaggedPointer(Register dst_addr, Register offset_reg, int32_t offset_imm, LiftoffRegister src, LiftoffRegList pinned, SkipWriteBarrier skip_write_barrier) { STATIC_ASSERT(kTaggedSize == kInt64Size); Register scratch = pinned.set(GetUnusedRegister(kGpReg, pinned)).gp(); MemOperand dst_op = liftoff::GetMemOp(this, dst_addr, offset_reg, offset_imm); Sd(src.gp(), dst_op); if (skip_write_barrier || FLAG_disable_write_barriers) return; Label write_barrier; Label exit; CheckPageFlag(dst_addr, scratch, MemoryChunk::kPointersFromHereAreInterestingMask, ne, &write_barrier); Branch(&exit); bind(&write_barrier); JumpIfSmi(src.gp(), &exit); CheckPageFlag(src.gp(), scratch, MemoryChunk::kPointersToHereAreInterestingMask, eq, &exit); Daddu(scratch, dst_op.rm(), dst_op.offset()); CallRecordWriteStubSaveRegisters( dst_addr, scratch, RememberedSetAction::kEmit, SaveFPRegsMode::kSave, StubCallMode::kCallWasmRuntimeStub); bind(&exit); } void LiftoffAssembler::Load(LiftoffRegister dst, Register src_addr, Register offset_reg, uintptr_t offset_imm, LoadType type, LiftoffRegList pinned, uint32_t* protected_load_pc, bool is_load_mem, bool i64_offset) { MemOperand src_op = liftoff::GetMemOp(this, src_addr, offset_reg, offset_imm); if (protected_load_pc) *protected_load_pc = pc_offset(); switch (type.value()) { case LoadType::kI32Load8U: case LoadType::kI64Load8U: Lbu(dst.gp(), src_op); break; case LoadType::kI32Load8S: case LoadType::kI64Load8S: Lb(dst.gp(), src_op); break; case LoadType::kI32Load16U: case LoadType::kI64Load16U: TurboAssembler::Ulhu(dst.gp(), src_op); break; case LoadType::kI32Load16S: case LoadType::kI64Load16S: TurboAssembler::Ulh(dst.gp(), src_op); break; case LoadType::kI64Load32U: TurboAssembler::Ulwu(dst.gp(), src_op); break; case LoadType::kI32Load: case LoadType::kI64Load32S: TurboAssembler::Ulw(dst.gp(), src_op); break; case LoadType::kI64Load: TurboAssembler::Uld(dst.gp(), src_op); break; case LoadType::kF32Load: TurboAssembler::Ulwc1(dst.fp(), src_op, t8); break; case LoadType::kF64Load: TurboAssembler::Uldc1(dst.fp(), src_op, t8); break; case LoadType::kS128Load: TurboAssembler::ld_b(dst.fp().toW(), src_op); break; default: UNREACHABLE(); } #if defined(V8_TARGET_BIG_ENDIAN) if (is_load_mem) { pinned.set(src_op.rm()); liftoff::ChangeEndiannessLoad(this, dst, type, pinned); } #endif } void LiftoffAssembler::Store(Register dst_addr, Register offset_reg, uintptr_t offset_imm, LiftoffRegister src, StoreType type, LiftoffRegList pinned, uint32_t* protected_store_pc, bool is_store_mem) { MemOperand dst_op = liftoff::GetMemOp(this, dst_addr, offset_reg, offset_imm); #if defined(V8_TARGET_BIG_ENDIAN) if (is_store_mem) { pinned.set(dst_op.rm()); LiftoffRegister tmp = GetUnusedRegister(src.reg_class(), pinned); // Save original value. Move(tmp, src, type.value_type()); src = tmp; pinned.set(tmp); liftoff::ChangeEndiannessStore(this, src, type, pinned); } #endif if (protected_store_pc) *protected_store_pc = pc_offset(); switch (type.value()) { case StoreType::kI32Store8: case StoreType::kI64Store8: Sb(src.gp(), dst_op); break; case StoreType::kI32Store16: case StoreType::kI64Store16: TurboAssembler::Ush(src.gp(), dst_op, t8); break; case StoreType::kI32Store: case StoreType::kI64Store32: TurboAssembler::Usw(src.gp(), dst_op); break; case StoreType::kI64Store: TurboAssembler::Usd(src.gp(), dst_op); break; case StoreType::kF32Store: TurboAssembler::Uswc1(src.fp(), dst_op, t8); break; case StoreType::kF64Store: TurboAssembler::Usdc1(src.fp(), dst_op, t8); break; case StoreType::kS128Store: TurboAssembler::st_b(src.fp().toW(), dst_op); break; default: UNREACHABLE(); } } void LiftoffAssembler::AtomicLoad(LiftoffRegister dst, Register src_addr, Register offset_reg, uintptr_t offset_imm, LoadType type, LiftoffRegList pinned) { bailout(kAtomics, "AtomicLoad"); } void LiftoffAssembler::AtomicStore(Register dst_addr, Register offset_reg, uintptr_t offset_imm, LiftoffRegister src, StoreType type, LiftoffRegList pinned) { bailout(kAtomics, "AtomicStore"); } void LiftoffAssembler::AtomicAdd(Register dst_addr, Register offset_reg, uintptr_t offset_imm, LiftoffRegister value, LiftoffRegister result, StoreType type) { bailout(kAtomics, "AtomicAdd"); } void LiftoffAssembler::AtomicSub(Register dst_addr, Register offset_reg, uintptr_t offset_imm, LiftoffRegister value, LiftoffRegister result, StoreType type) { bailout(kAtomics, "AtomicSub"); } void LiftoffAssembler::AtomicAnd(Register dst_addr, Register offset_reg, uintptr_t offset_imm, LiftoffRegister value, LiftoffRegister result, StoreType type) { bailout(kAtomics, "AtomicAnd"); } void LiftoffAssembler::AtomicOr(Register dst_addr, Register offset_reg, uintptr_t offset_imm, LiftoffRegister value, LiftoffRegister result, StoreType type) { bailout(kAtomics, "AtomicOr"); } void LiftoffAssembler::AtomicXor(Register dst_addr, Register offset_reg, uintptr_t offset_imm, LiftoffRegister value, LiftoffRegister result, StoreType type) { bailout(kAtomics, "AtomicXor"); } void LiftoffAssembler::AtomicExchange(Register dst_addr, Register offset_reg, uintptr_t offset_imm, LiftoffRegister value, LiftoffRegister result, StoreType type) { bailout(kAtomics, "AtomicExchange"); } void LiftoffAssembler::AtomicCompareExchange( Register dst_addr, Register offset_reg, uintptr_t offset_imm, LiftoffRegister expected, LiftoffRegister new_value, LiftoffRegister result, StoreType type) { bailout(kAtomics, "AtomicCompareExchange"); } void LiftoffAssembler::AtomicFence() { sync(); } void LiftoffAssembler::LoadCallerFrameSlot(LiftoffRegister dst, uint32_t caller_slot_idx, ValueKind kind) { MemOperand src(fp, kSystemPointerSize * (caller_slot_idx + 1)); liftoff::Load(this, dst, src, kind); } void LiftoffAssembler::StoreCallerFrameSlot(LiftoffRegister src, uint32_t caller_slot_idx, ValueKind kind) { int32_t offset = kSystemPointerSize * (caller_slot_idx + 1); liftoff::Store(this, fp, offset, src, kind); } void LiftoffAssembler::LoadReturnStackSlot(LiftoffRegister dst, int offset, ValueKind kind) { liftoff::Load(this, dst, MemOperand(sp, offset), kind); } void LiftoffAssembler::MoveStackValue(uint32_t dst_offset, uint32_t src_offset, ValueKind kind) { DCHECK_NE(dst_offset, src_offset); LiftoffRegister reg = GetUnusedRegister(reg_class_for(kind), {}); Fill(reg, src_offset, kind); Spill(dst_offset, reg, kind); } void LiftoffAssembler::Move(Register dst, Register src, ValueKind kind) { DCHECK_NE(dst, src); // TODO(ksreten): Handle different sizes here. TurboAssembler::Move(dst, src); } void LiftoffAssembler::Move(DoubleRegister dst, DoubleRegister src, ValueKind kind) { DCHECK_NE(dst, src); if (kind != kS128) { TurboAssembler::Move(dst, src); } else { TurboAssembler::move_v(dst.toW(), src.toW()); } } void LiftoffAssembler::Spill(int offset, LiftoffRegister reg, ValueKind kind) { RecordUsedSpillOffset(offset); MemOperand dst = liftoff::GetStackSlot(offset); switch (kind) { case kI32: Sw(reg.gp(), dst); break; case kI64: case kRef: case kOptRef: case kRtt: case kRttWithDepth: Sd(reg.gp(), dst); break; case kF32: Swc1(reg.fp(), dst); break; case kF64: TurboAssembler::Sdc1(reg.fp(), dst); break; case kS128: TurboAssembler::st_b(reg.fp().toW(), dst); break; default: UNREACHABLE(); } } void LiftoffAssembler::Spill(int offset, WasmValue value) { RecordUsedSpillOffset(offset); MemOperand dst = liftoff::GetStackSlot(offset); switch (value.type().kind()) { case kI32: { LiftoffRegister tmp = GetUnusedRegister(kGpReg, {}); TurboAssembler::li(tmp.gp(), Operand(value.to_i32())); Sw(tmp.gp(), dst); break; } case kI64: case kRef: case kOptRef: { LiftoffRegister tmp = GetUnusedRegister(kGpReg, {}); TurboAssembler::li(tmp.gp(), value.to_i64()); Sd(tmp.gp(), dst); break; } default: // kWasmF32 and kWasmF64 are unreachable, since those // constants are not tracked. UNREACHABLE(); } } void LiftoffAssembler::Fill(LiftoffRegister reg, int offset, ValueKind kind) { MemOperand src = liftoff::GetStackSlot(offset); switch (kind) { case kI32: Lw(reg.gp(), src); break; case kI64: case kRef: case kOptRef: Ld(reg.gp(), src); break; case kF32: Lwc1(reg.fp(), src); break; case kF64: TurboAssembler::Ldc1(reg.fp(), src); break; case kS128: TurboAssembler::ld_b(reg.fp().toW(), src); break; default: UNREACHABLE(); } } void LiftoffAssembler::FillI64Half(Register, int offset, RegPairHalf) { UNREACHABLE(); } void LiftoffAssembler::FillStackSlotsWithZero(int start, int size) { DCHECK_LT(0, size); RecordUsedSpillOffset(start + size); if (size <= 12 * kStackSlotSize) { // Special straight-line code for up to 12 slots. Generates one // instruction per slot (<= 12 instructions total). uint32_t remainder = size; for (; remainder >= kStackSlotSize; remainder -= kStackSlotSize) { Sd(zero_reg, liftoff::GetStackSlot(start + remainder)); } DCHECK(remainder == 4 || remainder == 0); if (remainder) { Sw(zero_reg, liftoff::GetStackSlot(start + remainder)); } } else { // General case for bigger counts (12 instructions). // Use a0 for start address (inclusive), a1 for end address (exclusive). Push(a1, a0); Daddu(a0, fp, Operand(-start - size)); Daddu(a1, fp, Operand(-start)); Label loop; bind(&loop); Sd(zero_reg, MemOperand(a0)); daddiu(a0, a0, kSystemPointerSize); BranchShort(&loop, ne, a0, Operand(a1)); Pop(a1, a0); } } void LiftoffAssembler::emit_i64_clz(LiftoffRegister dst, LiftoffRegister src) { TurboAssembler::Dclz(dst.gp(), src.gp()); } void LiftoffAssembler::emit_i64_ctz(LiftoffRegister dst, LiftoffRegister src) { TurboAssembler::Dctz(dst.gp(), src.gp()); } bool LiftoffAssembler::emit_i64_popcnt(LiftoffRegister dst, LiftoffRegister src) { TurboAssembler::Dpopcnt(dst.gp(), src.gp()); return true; } void LiftoffAssembler::emit_i32_mul(Register dst, Register lhs, Register rhs) { TurboAssembler::Mul(dst, lhs, rhs); } void LiftoffAssembler::emit_i32_divs(Register dst, Register lhs, Register rhs, Label* trap_div_by_zero, Label* trap_div_unrepresentable) { TurboAssembler::Branch(trap_div_by_zero, eq, rhs, Operand(zero_reg)); // Check if lhs == kMinInt and rhs == -1, since this case is unrepresentable. TurboAssembler::li(kScratchReg, 1); TurboAssembler::li(kScratchReg2, 1); TurboAssembler::LoadZeroOnCondition(kScratchReg, lhs, Operand(kMinInt), eq); TurboAssembler::LoadZeroOnCondition(kScratchReg2, rhs, Operand(-1), eq); daddu(kScratchReg, kScratchReg, kScratchReg2); TurboAssembler::Branch(trap_div_unrepresentable, eq, kScratchReg, Operand(zero_reg)); TurboAssembler::Div(dst, lhs, rhs); } void LiftoffAssembler::emit_i32_divu(Register dst, Register lhs, Register rhs, Label* trap_div_by_zero) { TurboAssembler::Branch(trap_div_by_zero, eq, rhs, Operand(zero_reg)); TurboAssembler::Divu(dst, lhs, rhs); } void LiftoffAssembler::emit_i32_rems(Register dst, Register lhs, Register rhs, Label* trap_div_by_zero) { TurboAssembler::Branch(trap_div_by_zero, eq, rhs, Operand(zero_reg)); TurboAssembler::Mod(dst, lhs, rhs); } void LiftoffAssembler::emit_i32_remu(Register dst, Register lhs, Register rhs, Label* trap_div_by_zero) { TurboAssembler::Branch(trap_div_by_zero, eq, rhs, Operand(zero_reg)); TurboAssembler::Modu(dst, lhs, rhs); } #define I32_BINOP(name, instruction) \ void LiftoffAssembler::emit_i32_##name(Register dst, Register lhs, \ Register rhs) { \ instruction(dst, lhs, rhs); \ } // clang-format off I32_BINOP(add, addu) I32_BINOP(sub, subu) I32_BINOP(and, and_) I32_BINOP(or, or_) I32_BINOP(xor, xor_) // clang-format on #undef I32_BINOP #define I32_BINOP_I(name, instruction) \ void LiftoffAssembler::emit_i32_##name##i(Register dst, Register lhs, \ int32_t imm) { \ instruction(dst, lhs, Operand(imm)); \ } // clang-format off I32_BINOP_I(add, Addu) I32_BINOP_I(sub, Subu) I32_BINOP_I(and, And) I32_BINOP_I(or, Or) I32_BINOP_I(xor, Xor) // clang-format on #undef I32_BINOP_I void LiftoffAssembler::emit_i32_clz(Register dst, Register src) { TurboAssembler::Clz(dst, src); } void LiftoffAssembler::emit_i32_ctz(Register dst, Register src) { TurboAssembler::Ctz(dst, src); } bool LiftoffAssembler::emit_i32_popcnt(Register dst, Register src) { TurboAssembler::Popcnt(dst, src); return true; } #define I32_SHIFTOP(name, instruction) \ void LiftoffAssembler::emit_i32_##name(Register dst, Register src, \ Register amount) { \ instruction(dst, src, amount); \ } #define I32_SHIFTOP_I(name, instruction) \ I32_SHIFTOP(name, instruction##v) \ void LiftoffAssembler::emit_i32_##name##i(Register dst, Register src, \ int amount) { \ instruction(dst, src, amount & 31); \ } I32_SHIFTOP_I(shl, sll) I32_SHIFTOP_I(sar, sra) I32_SHIFTOP_I(shr, srl) #undef I32_SHIFTOP #undef I32_SHIFTOP_I void LiftoffAssembler::emit_i64_addi(LiftoffRegister dst, LiftoffRegister lhs, int64_t imm) { TurboAssembler::Daddu(dst.gp(), lhs.gp(), Operand(imm)); } void LiftoffAssembler::emit_i64_mul(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { TurboAssembler::Dmul(dst.gp(), lhs.gp(), rhs.gp()); } bool LiftoffAssembler::emit_i64_divs(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs, Label* trap_div_by_zero, Label* trap_div_unrepresentable) { TurboAssembler::Branch(trap_div_by_zero, eq, rhs.gp(), Operand(zero_reg)); // Check if lhs == MinInt64 and rhs == -1, since this case is unrepresentable. TurboAssembler::li(kScratchReg, 1); TurboAssembler::li(kScratchReg2, 1); TurboAssembler::LoadZeroOnCondition( kScratchReg, lhs.gp(), Operand(std::numeric_limits<int64_t>::min()), eq); TurboAssembler::LoadZeroOnCondition(kScratchReg2, rhs.gp(), Operand(-1), eq); daddu(kScratchReg, kScratchReg, kScratchReg2); TurboAssembler::Branch(trap_div_unrepresentable, eq, kScratchReg, Operand(zero_reg)); TurboAssembler::Ddiv(dst.gp(), lhs.gp(), rhs.gp()); return true; } bool LiftoffAssembler::emit_i64_divu(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs, Label* trap_div_by_zero) { TurboAssembler::Branch(trap_div_by_zero, eq, rhs.gp(), Operand(zero_reg)); TurboAssembler::Ddivu(dst.gp(), lhs.gp(), rhs.gp()); return true; } bool LiftoffAssembler::emit_i64_rems(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs, Label* trap_div_by_zero) { TurboAssembler::Branch(trap_div_by_zero, eq, rhs.gp(), Operand(zero_reg)); TurboAssembler::Dmod(dst.gp(), lhs.gp(), rhs.gp()); return true; } bool LiftoffAssembler::emit_i64_remu(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs, Label* trap_div_by_zero) { TurboAssembler::Branch(trap_div_by_zero, eq, rhs.gp(), Operand(zero_reg)); TurboAssembler::Dmodu(dst.gp(), lhs.gp(), rhs.gp()); return true; } #define I64_BINOP(name, instruction) \ void LiftoffAssembler::emit_i64_##name( \ LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \ instruction(dst.gp(), lhs.gp(), rhs.gp()); \ } // clang-format off I64_BINOP(add, daddu) I64_BINOP(sub, dsubu) I64_BINOP(and, and_) I64_BINOP(or, or_) I64_BINOP(xor, xor_) // clang-format on #undef I64_BINOP #define I64_BINOP_I(name, instruction) \ void LiftoffAssembler::emit_i64_##name##i( \ LiftoffRegister dst, LiftoffRegister lhs, int32_t imm) { \ instruction(dst.gp(), lhs.gp(), Operand(imm)); \ } // clang-format off I64_BINOP_I(and, And) I64_BINOP_I(or, Or) I64_BINOP_I(xor, Xor) // clang-format on #undef I64_BINOP_I #define I64_SHIFTOP(name, instruction) \ void LiftoffAssembler::emit_i64_##name( \ LiftoffRegister dst, LiftoffRegister src, Register amount) { \ instruction(dst.gp(), src.gp(), amount); \ } #define I64_SHIFTOP_I(name, instruction) \ I64_SHIFTOP(name, instruction##v) \ void LiftoffAssembler::emit_i64_##name##i(LiftoffRegister dst, \ LiftoffRegister src, int amount) { \ amount &= 63; \ if (amount < 32) \ instruction(dst.gp(), src.gp(), amount); \ else \ instruction##32(dst.gp(), src.gp(), amount - 32); \ } I64_SHIFTOP_I(shl, dsll) I64_SHIFTOP_I(sar, dsra) I64_SHIFTOP_I(shr, dsrl) #undef I64_SHIFTOP #undef I64_SHIFTOP_I void LiftoffAssembler::emit_u32_to_intptr(Register dst, Register src) { Dext(dst, src, 0, 32); } void LiftoffAssembler::emit_f32_neg(DoubleRegister dst, DoubleRegister src) { TurboAssembler::Neg_s(dst, src); } void LiftoffAssembler::emit_f64_neg(DoubleRegister dst, DoubleRegister src) { TurboAssembler::Neg_d(dst, src); } void LiftoffAssembler::emit_f32_min(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { Label ool, done; TurboAssembler::Float32Min(dst, lhs, rhs, &ool); Branch(&done); bind(&ool); TurboAssembler::Float32MinOutOfLine(dst, lhs, rhs); bind(&done); } void LiftoffAssembler::emit_f32_max(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { Label ool, done; TurboAssembler::Float32Max(dst, lhs, rhs, &ool); Branch(&done); bind(&ool); TurboAssembler::Float32MaxOutOfLine(dst, lhs, rhs); bind(&done); } void LiftoffAssembler::emit_f32_copysign(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { bailout(kComplexOperation, "f32_copysign"); } void LiftoffAssembler::emit_f64_min(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { Label ool, done; TurboAssembler::Float64Min(dst, lhs, rhs, &ool); Branch(&done); bind(&ool); TurboAssembler::Float64MinOutOfLine(dst, lhs, rhs); bind(&done); } void LiftoffAssembler::emit_f64_max(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { Label ool, done; TurboAssembler::Float64Max(dst, lhs, rhs, &ool); Branch(&done); bind(&ool); TurboAssembler::Float64MaxOutOfLine(dst, lhs, rhs); bind(&done); } void LiftoffAssembler::emit_f64_copysign(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { bailout(kComplexOperation, "f64_copysign"); } #define FP_BINOP(name, instruction) \ void LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister lhs, \ DoubleRegister rhs) { \ instruction(dst, lhs, rhs); \ } #define FP_UNOP(name, instruction) \ void LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister src) { \ instruction(dst, src); \ } #define FP_UNOP_RETURN_TRUE(name, instruction) \ bool LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister src) { \ instruction(dst, src); \ return true; \ } FP_BINOP(f32_add, add_s) FP_BINOP(f32_sub, sub_s) FP_BINOP(f32_mul, mul_s) FP_BINOP(f32_div, div_s) FP_UNOP(f32_abs, abs_s) FP_UNOP_RETURN_TRUE(f32_ceil, Ceil_s_s) FP_UNOP_RETURN_TRUE(f32_floor, Floor_s_s) FP_UNOP_RETURN_TRUE(f32_trunc, Trunc_s_s) FP_UNOP_RETURN_TRUE(f32_nearest_int, Round_s_s) FP_UNOP(f32_sqrt, sqrt_s) FP_BINOP(f64_add, add_d) FP_BINOP(f64_sub, sub_d) FP_BINOP(f64_mul, mul_d) FP_BINOP(f64_div, div_d) FP_UNOP(f64_abs, abs_d) FP_UNOP_RETURN_TRUE(f64_ceil, Ceil_d_d) FP_UNOP_RETURN_TRUE(f64_floor, Floor_d_d) FP_UNOP_RETURN_TRUE(f64_trunc, Trunc_d_d) FP_UNOP_RETURN_TRUE(f64_nearest_int, Round_d_d) FP_UNOP(f64_sqrt, sqrt_d) #undef FP_BINOP #undef FP_UNOP #undef FP_UNOP_RETURN_TRUE bool LiftoffAssembler::emit_type_conversion(WasmOpcode opcode, LiftoffRegister dst, LiftoffRegister src, Label* trap) { switch (opcode) { case kExprI32ConvertI64: TurboAssembler::Ext(dst.gp(), src.gp(), 0, 32); return true; case kExprI32SConvertF32: { LiftoffRegister rounded = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src)); LiftoffRegister converted_back = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded)); // Real conversion. TurboAssembler::Trunc_s_s(rounded.fp(), src.fp()); trunc_w_s(kScratchDoubleReg, rounded.fp()); mfc1(dst.gp(), kScratchDoubleReg); // Avoid INT32_MAX as an overflow indicator and use INT32_MIN instead, // because INT32_MIN allows easier out-of-bounds detection. TurboAssembler::Addu(kScratchReg, dst.gp(), 1); TurboAssembler::Slt(kScratchReg2, kScratchReg, dst.gp()); TurboAssembler::Movn(dst.gp(), kScratchReg, kScratchReg2); // Checking if trap. mtc1(dst.gp(), kScratchDoubleReg); cvt_s_w(converted_back.fp(), kScratchDoubleReg); TurboAssembler::CompareF32(EQ, rounded.fp(), converted_back.fp()); TurboAssembler::BranchFalseF(trap); return true; } case kExprI32UConvertF32: { LiftoffRegister rounded = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src)); LiftoffRegister converted_back = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded)); // Real conversion. TurboAssembler::Trunc_s_s(rounded.fp(), src.fp()); TurboAssembler::Trunc_uw_s(dst.gp(), rounded.fp(), kScratchDoubleReg); // Avoid UINT32_MAX as an overflow indicator and use 0 instead, // because 0 allows easier out-of-bounds detection. TurboAssembler::Addu(kScratchReg, dst.gp(), 1); TurboAssembler::Movz(dst.gp(), zero_reg, kScratchReg); // Checking if trap. TurboAssembler::Cvt_d_uw(converted_back.fp(), dst.gp()); cvt_s_d(converted_back.fp(), converted_back.fp()); TurboAssembler::CompareF32(EQ, rounded.fp(), converted_back.fp()); TurboAssembler::BranchFalseF(trap); return true; } case kExprI32SConvertF64: { LiftoffRegister rounded = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src)); LiftoffRegister converted_back = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded)); // Real conversion. TurboAssembler::Trunc_d_d(rounded.fp(), src.fp()); trunc_w_d(kScratchDoubleReg, rounded.fp()); mfc1(dst.gp(), kScratchDoubleReg); // Checking if trap. cvt_d_w(converted_back.fp(), kScratchDoubleReg); TurboAssembler::CompareF64(EQ, rounded.fp(), converted_back.fp()); TurboAssembler::BranchFalseF(trap); return true; } case kExprI32UConvertF64: { LiftoffRegister rounded = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src)); LiftoffRegister converted_back = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded)); // Real conversion. TurboAssembler::Trunc_d_d(rounded.fp(), src.fp()); TurboAssembler::Trunc_uw_d(dst.gp(), rounded.fp(), kScratchDoubleReg); // Checking if trap. TurboAssembler::Cvt_d_uw(converted_back.fp(), dst.gp()); TurboAssembler::CompareF64(EQ, rounded.fp(), converted_back.fp()); TurboAssembler::BranchFalseF(trap); return true; } case kExprI32ReinterpretF32: TurboAssembler::FmoveLow(dst.gp(), src.fp()); return true; case kExprI64SConvertI32: sll(dst.gp(), src.gp(), 0); return true; case kExprI64UConvertI32: TurboAssembler::Dext(dst.gp(), src.gp(), 0, 32); return true; case kExprI64SConvertF32: { LiftoffRegister rounded = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src)); LiftoffRegister converted_back = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded)); // Real conversion. TurboAssembler::Trunc_s_s(rounded.fp(), src.fp()); trunc_l_s(kScratchDoubleReg, rounded.fp()); dmfc1(dst.gp(), kScratchDoubleReg); // Avoid INT64_MAX as an overflow indicator and use INT64_MIN instead, // because INT64_MIN allows easier out-of-bounds detection. TurboAssembler::Daddu(kScratchReg, dst.gp(), 1); TurboAssembler::Slt(kScratchReg2, kScratchReg, dst.gp()); TurboAssembler::Movn(dst.gp(), kScratchReg, kScratchReg2); // Checking if trap. dmtc1(dst.gp(), kScratchDoubleReg); cvt_s_l(converted_back.fp(), kScratchDoubleReg); TurboAssembler::CompareF32(EQ, rounded.fp(), converted_back.fp()); TurboAssembler::BranchFalseF(trap); return true; } case kExprI64UConvertF32: { // Real conversion. TurboAssembler::Trunc_ul_s(dst.gp(), src.fp(), kScratchDoubleReg, kScratchReg); // Checking if trap. TurboAssembler::Branch(trap, eq, kScratchReg, Operand(zero_reg)); return true; } case kExprI64SConvertF64: { LiftoffRegister rounded = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src)); LiftoffRegister converted_back = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(src, rounded)); // Real conversion. TurboAssembler::Trunc_d_d(rounded.fp(), src.fp()); trunc_l_d(kScratchDoubleReg, rounded.fp()); dmfc1(dst.gp(), kScratchDoubleReg); // Avoid INT64_MAX as an overflow indicator and use INT64_MIN instead, // because INT64_MIN allows easier out-of-bounds detection. TurboAssembler::Daddu(kScratchReg, dst.gp(), 1); TurboAssembler::Slt(kScratchReg2, kScratchReg, dst.gp()); TurboAssembler::Movn(dst.gp(), kScratchReg, kScratchReg2); // Checking if trap. dmtc1(dst.gp(), kScratchDoubleReg); cvt_d_l(converted_back.fp(), kScratchDoubleReg); TurboAssembler::CompareF64(EQ, rounded.fp(), converted_back.fp()); TurboAssembler::BranchFalseF(trap); return true; } case kExprI64UConvertF64: { // Real conversion. TurboAssembler::Trunc_ul_d(dst.gp(), src.fp(), kScratchDoubleReg, kScratchReg); // Checking if trap. TurboAssembler::Branch(trap, eq, kScratchReg, Operand(zero_reg)); return true; } case kExprI64ReinterpretF64: dmfc1(dst.gp(), src.fp()); return true; case kExprF32SConvertI32: { LiftoffRegister scratch = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(dst)); mtc1(src.gp(), scratch.fp()); cvt_s_w(dst.fp(), scratch.fp()); return true; } case kExprF32UConvertI32: TurboAssembler::Cvt_s_uw(dst.fp(), src.gp()); return true; case kExprF32ConvertF64: cvt_s_d(dst.fp(), src.fp()); return true; case kExprF32ReinterpretI32: TurboAssembler::FmoveLow(dst.fp(), src.gp()); return true; case kExprF64SConvertI32: { LiftoffRegister scratch = GetUnusedRegister(kFpReg, LiftoffRegList::ForRegs(dst)); mtc1(src.gp(), scratch.fp()); cvt_d_w(dst.fp(), scratch.fp()); return true; } case kExprF64UConvertI32: TurboAssembler::Cvt_d_uw(dst.fp(), src.gp()); return true; case kExprF64ConvertF32: cvt_d_s(dst.fp(), src.fp()); return true; case kExprF64ReinterpretI64: dmtc1(src.gp(), dst.fp()); return true; case kExprI32SConvertSatF32: bailout(kNonTrappingFloatToInt, "kExprI32SConvertSatF32"); return true; case kExprI32UConvertSatF32: bailout(kNonTrappingFloatToInt, "kExprI32UConvertSatF32"); return true; case kExprI32SConvertSatF64: bailout(kNonTrappingFloatToInt, "kExprI32SConvertSatF64"); return true; case kExprI32UConvertSatF64: bailout(kNonTrappingFloatToInt, "kExprI32UConvertSatF64"); return true; case kExprI64SConvertSatF32: bailout(kNonTrappingFloatToInt, "kExprI64SConvertSatF32"); return true; case kExprI64UConvertSatF32: bailout(kNonTrappingFloatToInt, "kExprI64UConvertSatF32"); return true; case kExprI64SConvertSatF64: bailout(kNonTrappingFloatToInt, "kExprI64SConvertSatF64"); return true; case kExprI64UConvertSatF64: bailout(kNonTrappingFloatToInt, "kExprI64UConvertSatF64"); return true; default: return false; } } void LiftoffAssembler::emit_i32_signextend_i8(Register dst, Register src) { bailout(kComplexOperation, "i32_signextend_i8"); } void LiftoffAssembler::emit_i32_signextend_i16(Register dst, Register src) { bailout(kComplexOperation, "i32_signextend_i16"); } void LiftoffAssembler::emit_i64_signextend_i8(LiftoffRegister dst, LiftoffRegister src) { bailout(kComplexOperation, "i64_signextend_i8"); } void LiftoffAssembler::emit_i64_signextend_i16(LiftoffRegister dst, LiftoffRegister src) { bailout(kComplexOperation, "i64_signextend_i16"); } void LiftoffAssembler::emit_i64_signextend_i32(LiftoffRegister dst, LiftoffRegister src) { bailout(kComplexOperation, "i64_signextend_i32"); } void LiftoffAssembler::emit_jump(Label* label) { TurboAssembler::Branch(label); } void LiftoffAssembler::emit_jump(Register target) { TurboAssembler::Jump(target); } void LiftoffAssembler::emit_cond_jump(LiftoffCondition liftoff_cond, Label* label, ValueKind kind, Register lhs, Register rhs) { Condition cond = liftoff::ToCondition(liftoff_cond); if (rhs == no_reg) { DCHECK(kind == kI32 || kind == kI64); TurboAssembler::Branch(label, cond, lhs, Operand(zero_reg)); } else { DCHECK((kind == kI32 || kind == kI64) || (is_reference(kind) && (liftoff_cond == kEqual || liftoff_cond == kUnequal))); TurboAssembler::Branch(label, cond, lhs, Operand(rhs)); } } void LiftoffAssembler::emit_i32_cond_jumpi(LiftoffCondition liftoff_cond, Label* label, Register lhs, int32_t imm) { Condition cond = liftoff::ToCondition(liftoff_cond); TurboAssembler::Branch(label, cond, lhs, Operand(imm)); } void LiftoffAssembler::emit_i32_eqz(Register dst, Register src) { sltiu(dst, src, 1); } void LiftoffAssembler::emit_i32_set_cond(LiftoffCondition liftoff_cond, Register dst, Register lhs, Register rhs) { Condition cond = liftoff::ToCondition(liftoff_cond); Register tmp = dst; if (dst == lhs || dst == rhs) { tmp = GetUnusedRegister(kGpReg, LiftoffRegList::ForRegs(lhs, rhs)).gp(); } // Write 1 as result. TurboAssembler::li(tmp, 1); // If negative condition is true, write 0 as result. Condition neg_cond = NegateCondition(cond); TurboAssembler::LoadZeroOnCondition(tmp, lhs, Operand(rhs), neg_cond); // If tmp != dst, result will be moved. TurboAssembler::Move(dst, tmp); } void LiftoffAssembler::emit_i64_eqz(Register dst, LiftoffRegister src) { sltiu(dst, src.gp(), 1); } void LiftoffAssembler::emit_i64_set_cond(LiftoffCondition liftoff_cond, Register dst, LiftoffRegister lhs, LiftoffRegister rhs) { Condition cond = liftoff::ToCondition(liftoff_cond); Register tmp = dst; if (dst == lhs.gp() || dst == rhs.gp()) { tmp = GetUnusedRegister(kGpReg, LiftoffRegList::ForRegs(lhs, rhs)).gp(); } // Write 1 as result. TurboAssembler::li(tmp, 1); // If negative condition is true, write 0 as result. Condition neg_cond = NegateCondition(cond); TurboAssembler::LoadZeroOnCondition(tmp, lhs.gp(), Operand(rhs.gp()), neg_cond); // If tmp != dst, result will be moved. TurboAssembler::Move(dst, tmp); } namespace liftoff { inline FPUCondition ConditionToConditionCmpFPU(LiftoffCondition condition, bool* predicate) { switch (condition) { case kEqual: *predicate = true; return EQ; case kUnequal: *predicate = false; return EQ; case kUnsignedLessThan: *predicate = true; return OLT; case kUnsignedGreaterEqual: *predicate = false; return OLT; case kUnsignedLessEqual: *predicate = true; return OLE; case kUnsignedGreaterThan: *predicate = false; return OLE; default: *predicate = true; break; } UNREACHABLE(); } inline void EmitAnyTrue(LiftoffAssembler* assm, LiftoffRegister dst, LiftoffRegister src) { Label all_false; assm->BranchMSA(&all_false, MSA_BRANCH_V, all_zero, src.fp().toW(), USE_DELAY_SLOT); assm->li(dst.gp(), 0l); assm->li(dst.gp(), 1); assm->bind(&all_false); } inline void EmitAllTrue(LiftoffAssembler* assm, LiftoffRegister dst, LiftoffRegister src, MSABranchDF msa_branch_df) { Label all_true; assm->BranchMSA(&all_true, msa_branch_df, all_not_zero, src.fp().toW(), USE_DELAY_SLOT); assm->li(dst.gp(), 1); assm->li(dst.gp(), 0l); assm->bind(&all_true); } } // namespace liftoff void LiftoffAssembler::emit_f32_set_cond(LiftoffCondition liftoff_cond, Register dst, DoubleRegister lhs, DoubleRegister rhs) { Condition cond = liftoff::ToCondition(liftoff_cond); Label not_nan, cont; TurboAssembler::CompareIsNanF32(lhs, rhs); TurboAssembler::BranchFalseF(¬_nan); // If one of the operands is NaN, return 1 for f32.ne, else 0. if (cond == ne) { TurboAssembler::li(dst, 1); } else { TurboAssembler::Move(dst, zero_reg); } TurboAssembler::Branch(&cont); bind(¬_nan); TurboAssembler::li(dst, 1); bool predicate; FPUCondition fcond = liftoff::ConditionToConditionCmpFPU(liftoff_cond, &predicate); TurboAssembler::CompareF32(fcond, lhs, rhs); if (predicate) { TurboAssembler::LoadZeroIfNotFPUCondition(dst); } else { TurboAssembler::LoadZeroIfFPUCondition(dst); } bind(&cont); } void LiftoffAssembler::emit_f64_set_cond(LiftoffCondition liftoff_cond, Register dst, DoubleRegister lhs, DoubleRegister rhs) { Condition cond = liftoff::ToCondition(liftoff_cond); Label not_nan, cont; TurboAssembler::CompareIsNanF64(lhs, rhs); TurboAssembler::BranchFalseF(¬_nan); // If one of the operands is NaN, return 1 for f64.ne, else 0. if (cond == ne) { TurboAssembler::li(dst, 1); } else { TurboAssembler::Move(dst, zero_reg); } TurboAssembler::Branch(&cont); bind(¬_nan); TurboAssembler::li(dst, 1); bool predicate; FPUCondition fcond = liftoff::ConditionToConditionCmpFPU(liftoff_cond, &predicate); TurboAssembler::CompareF64(fcond, lhs, rhs); if (predicate) { TurboAssembler::LoadZeroIfNotFPUCondition(dst); } else { TurboAssembler::LoadZeroIfFPUCondition(dst); } bind(&cont); } bool LiftoffAssembler::emit_select(LiftoffRegister dst, Register condition, LiftoffRegister true_value, LiftoffRegister false_value, ValueKind kind) { return false; } void LiftoffAssembler::emit_smi_check(Register obj, Label* target, SmiCheckMode mode) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); And(scratch, obj, Operand(kSmiTagMask)); Condition condition = mode == kJumpOnSmi ? eq : ne; Branch(target, condition, scratch, Operand(zero_reg)); } void LiftoffAssembler::LoadTransform(LiftoffRegister dst, Register src_addr, Register offset_reg, uintptr_t offset_imm, LoadType type, LoadTransformationKind transform, uint32_t* protected_load_pc) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); MemOperand src_op = liftoff::GetMemOp(this, src_addr, offset_reg, offset_imm); MSARegister dst_msa = dst.fp().toW(); *protected_load_pc = pc_offset(); MachineType memtype = type.mem_type(); if (transform == LoadTransformationKind::kExtend) { Ld(scratch, src_op); if (memtype == MachineType::Int8()) { fill_d(dst_msa, scratch); clti_s_b(kSimd128ScratchReg, dst_msa, 0); ilvr_b(dst_msa, kSimd128ScratchReg, dst_msa); } else if (memtype == MachineType::Uint8()) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); fill_d(dst_msa, scratch); ilvr_b(dst_msa, kSimd128RegZero, dst_msa); } else if (memtype == MachineType::Int16()) { fill_d(dst_msa, scratch); clti_s_h(kSimd128ScratchReg, dst_msa, 0); ilvr_h(dst_msa, kSimd128ScratchReg, dst_msa); } else if (memtype == MachineType::Uint16()) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); fill_d(dst_msa, scratch); ilvr_h(dst_msa, kSimd128RegZero, dst_msa); } else if (memtype == MachineType::Int32()) { fill_d(dst_msa, scratch); clti_s_w(kSimd128ScratchReg, dst_msa, 0); ilvr_w(dst_msa, kSimd128ScratchReg, dst_msa); } else if (memtype == MachineType::Uint32()) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); fill_d(dst_msa, scratch); ilvr_w(dst_msa, kSimd128RegZero, dst_msa); } } else if (transform == LoadTransformationKind::kZeroExtend) { xor_v(dst_msa, dst_msa, dst_msa); if (memtype == MachineType::Int32()) { Lwu(scratch, src_op); insert_w(dst_msa, 0, scratch); } else { DCHECK_EQ(MachineType::Int64(), memtype); Ld(scratch, src_op); insert_d(dst_msa, 0, scratch); } } else { DCHECK_EQ(LoadTransformationKind::kSplat, transform); if (memtype == MachineType::Int8()) { Lb(scratch, src_op); fill_b(dst_msa, scratch); } else if (memtype == MachineType::Int16()) { Lh(scratch, src_op); fill_h(dst_msa, scratch); } else if (memtype == MachineType::Int32()) { Lw(scratch, src_op); fill_w(dst_msa, scratch); } else if (memtype == MachineType::Int64()) { Ld(scratch, src_op); fill_d(dst_msa, scratch); } } } void LiftoffAssembler::LoadLane(LiftoffRegister dst, LiftoffRegister src, Register addr, Register offset_reg, uintptr_t offset_imm, LoadType type, uint8_t laneidx, uint32_t* protected_load_pc) { MemOperand src_op = liftoff::GetMemOp(this, addr, offset_reg, offset_imm); *protected_load_pc = pc_offset(); LoadStoreLaneParams load_params(type.mem_type().representation(), laneidx); TurboAssembler::LoadLane(load_params.sz, dst.fp().toW(), laneidx, src_op); } void LiftoffAssembler::StoreLane(Register dst, Register offset, uintptr_t offset_imm, LiftoffRegister src, StoreType type, uint8_t lane, uint32_t* protected_store_pc) { MemOperand dst_op = liftoff::GetMemOp(this, dst, offset, offset_imm); if (protected_store_pc) *protected_store_pc = pc_offset(); LoadStoreLaneParams store_params(type.mem_rep(), lane); TurboAssembler::StoreLane(store_params.sz, src.fp().toW(), lane, dst_op); } void LiftoffAssembler::emit_i8x16_shuffle(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs, const uint8_t shuffle[16], bool is_swizzle) { MSARegister dst_msa = dst.fp().toW(); MSARegister lhs_msa = lhs.fp().toW(); MSARegister rhs_msa = rhs.fp().toW(); uint64_t control_hi = 0; uint64_t control_low = 0; for (int i = 7; i >= 0; i--) { control_hi <<= 8; control_hi |= shuffle[i + 8]; control_low <<= 8; control_low |= shuffle[i]; } if (dst_msa == lhs_msa) { move_v(kSimd128ScratchReg, lhs_msa); lhs_msa = kSimd128ScratchReg; } else if (dst_msa == rhs_msa) { move_v(kSimd128ScratchReg, rhs_msa); rhs_msa = kSimd128ScratchReg; } li(kScratchReg, control_low); insert_d(dst_msa, 0, kScratchReg); li(kScratchReg, control_hi); insert_d(dst_msa, 1, kScratchReg); vshf_b(dst_msa, rhs_msa, lhs_msa); } void LiftoffAssembler::emit_i8x16_swizzle(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { MSARegister dst_msa = dst.fp().toW(); MSARegister lhs_msa = lhs.fp().toW(); MSARegister rhs_msa = rhs.fp().toW(); if (dst == lhs) { move_v(kSimd128ScratchReg, lhs_msa); lhs_msa = kSimd128ScratchReg; } xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); move_v(dst_msa, rhs_msa); vshf_b(dst_msa, kSimd128RegZero, lhs_msa); } void LiftoffAssembler::emit_i8x16_splat(LiftoffRegister dst, LiftoffRegister src) { fill_b(dst.fp().toW(), src.gp()); } void LiftoffAssembler::emit_i16x8_splat(LiftoffRegister dst, LiftoffRegister src) { fill_h(dst.fp().toW(), src.gp()); } void LiftoffAssembler::emit_i32x4_splat(LiftoffRegister dst, LiftoffRegister src) { fill_w(dst.fp().toW(), src.gp()); } void LiftoffAssembler::emit_i64x2_splat(LiftoffRegister dst, LiftoffRegister src) { fill_d(dst.fp().toW(), src.gp()); } void LiftoffAssembler::emit_f32x4_splat(LiftoffRegister dst, LiftoffRegister src) { TurboAssembler::FmoveLow(kScratchReg, src.fp()); fill_w(dst.fp().toW(), kScratchReg); } void LiftoffAssembler::emit_f64x2_splat(LiftoffRegister dst, LiftoffRegister src) { TurboAssembler::Move(kScratchReg, src.fp()); fill_d(dst.fp().toW(), kScratchReg); } #define SIMD_BINOP(name1, name2, type) \ void LiftoffAssembler::emit_##name1##_extmul_low_##name2( \ LiftoffRegister dst, LiftoffRegister src1, LiftoffRegister src2) { \ TurboAssembler::ExtMulLow(type, dst.fp().toW(), src1.fp().toW(), \ src2.fp().toW()); \ } \ void LiftoffAssembler::emit_##name1##_extmul_high_##name2( \ LiftoffRegister dst, LiftoffRegister src1, LiftoffRegister src2) { \ TurboAssembler::ExtMulHigh(type, dst.fp().toW(), src1.fp().toW(), \ src2.fp().toW()); \ } SIMD_BINOP(i16x8, i8x16_s, MSAS8) SIMD_BINOP(i16x8, i8x16_u, MSAU8) SIMD_BINOP(i32x4, i16x8_s, MSAS16) SIMD_BINOP(i32x4, i16x8_u, MSAU16) SIMD_BINOP(i64x2, i32x4_s, MSAS32) SIMD_BINOP(i64x2, i32x4_u, MSAU32) #undef SIMD_BINOP #define SIMD_BINOP(name1, name2, type) \ void LiftoffAssembler::emit_##name1##_extadd_pairwise_##name2( \ LiftoffRegister dst, LiftoffRegister src) { \ TurboAssembler::ExtAddPairwise(type, dst.fp().toW(), src.fp().toW()); \ } SIMD_BINOP(i16x8, i8x16_s, MSAS8) SIMD_BINOP(i16x8, i8x16_u, MSAU8) SIMD_BINOP(i32x4, i16x8_s, MSAS16) SIMD_BINOP(i32x4, i16x8_u, MSAU16) #undef SIMD_BINOP void LiftoffAssembler::emit_i16x8_q15mulr_sat_s(LiftoffRegister dst, LiftoffRegister src1, LiftoffRegister src2) { mulr_q_h(dst.fp().toW(), src1.fp().toW(), src2.fp().toW()); } void LiftoffAssembler::emit_i8x16_eq(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { ceq_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_ne(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { ceq_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); nor_v(dst.fp().toW(), dst.fp().toW(), dst.fp().toW()); } void LiftoffAssembler::emit_i8x16_gt_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { clt_s_b(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_gt_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { clt_u_b(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_ge_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { cle_s_b(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_ge_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { cle_u_b(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_eq(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { ceq_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_ne(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { ceq_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); nor_v(dst.fp().toW(), dst.fp().toW(), dst.fp().toW()); } void LiftoffAssembler::emit_i16x8_gt_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { clt_s_h(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_gt_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { clt_u_h(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_ge_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { cle_s_h(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_ge_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { cle_u_h(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_eq(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { ceq_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_ne(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { ceq_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); nor_v(dst.fp().toW(), dst.fp().toW(), dst.fp().toW()); } void LiftoffAssembler::emit_i32x4_gt_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { clt_s_w(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_gt_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { clt_u_w(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_ge_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { cle_s_w(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_ge_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { cle_u_w(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_f32x4_eq(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fceq_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f32x4_ne(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fcune_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f32x4_lt(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fclt_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f32x4_le(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fcle_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i64x2_eq(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { ceq_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i64x2_ne(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { ceq_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); nor_v(dst.fp().toW(), dst.fp().toW(), dst.fp().toW()); } void LiftoffAssembler::emit_i64x2_abs(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); add_a_d(dst.fp().toW(), src.fp().toW(), kSimd128RegZero); } void LiftoffAssembler::emit_f64x2_eq(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fceq_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f64x2_ne(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fcune_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f64x2_lt(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fclt_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f64x2_le(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fcle_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_s128_const(LiftoffRegister dst, const uint8_t imms[16]) { MSARegister dst_msa = dst.fp().toW(); uint64_t vals[2]; memcpy(vals, imms, sizeof(vals)); li(kScratchReg, vals[0]); insert_d(dst_msa, 0, kScratchReg); li(kScratchReg, vals[1]); insert_d(dst_msa, 1, kScratchReg); } void LiftoffAssembler::emit_s128_not(LiftoffRegister dst, LiftoffRegister src) { nor_v(dst.fp().toW(), src.fp().toW(), src.fp().toW()); } void LiftoffAssembler::emit_s128_and(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { and_v(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_s128_or(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { or_v(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_s128_xor(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { xor_v(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_s128_and_not(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { nor_v(kSimd128ScratchReg, rhs.fp().toW(), rhs.fp().toW()); and_v(dst.fp().toW(), kSimd128ScratchReg, lhs.fp().toW()); } void LiftoffAssembler::emit_s128_select(LiftoffRegister dst, LiftoffRegister src1, LiftoffRegister src2, LiftoffRegister mask) { if (dst == mask) { bsel_v(dst.fp().toW(), src2.fp().toW(), src1.fp().toW()); } else { xor_v(kSimd128ScratchReg, src1.fp().toW(), src2.fp().toW()); and_v(kSimd128ScratchReg, kSimd128ScratchReg, mask.fp().toW()); xor_v(dst.fp().toW(), kSimd128ScratchReg, src2.fp().toW()); } } void LiftoffAssembler::emit_i8x16_neg(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); subv_b(dst.fp().toW(), kSimd128RegZero, src.fp().toW()); } void LiftoffAssembler::emit_v128_anytrue(LiftoffRegister dst, LiftoffRegister src) { liftoff::EmitAnyTrue(this, dst, src); } void LiftoffAssembler::emit_i8x16_alltrue(LiftoffRegister dst, LiftoffRegister src) { liftoff::EmitAllTrue(this, dst, src, MSA_BRANCH_B); } void LiftoffAssembler::emit_i8x16_bitmask(LiftoffRegister dst, LiftoffRegister src) { MSARegister scratch0 = kSimd128RegZero; MSARegister scratch1 = kSimd128ScratchReg; srli_b(scratch0, src.fp().toW(), 7); srli_h(scratch1, scratch0, 7); or_v(scratch0, scratch0, scratch1); srli_w(scratch1, scratch0, 14); or_v(scratch0, scratch0, scratch1); srli_d(scratch1, scratch0, 28); or_v(scratch0, scratch0, scratch1); shf_w(scratch1, scratch0, 0x0E); ilvev_b(scratch0, scratch1, scratch0); copy_u_h(dst.gp(), scratch0, 0); } void LiftoffAssembler::emit_i8x16_shl(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fill_b(kSimd128ScratchReg, rhs.gp()); sll_b(dst.fp().toW(), lhs.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i8x16_shli(LiftoffRegister dst, LiftoffRegister lhs, int32_t rhs) { slli_b(dst.fp().toW(), lhs.fp().toW(), rhs & 7); } void LiftoffAssembler::emit_i8x16_shr_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fill_b(kSimd128ScratchReg, rhs.gp()); sra_b(dst.fp().toW(), lhs.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i8x16_shri_s(LiftoffRegister dst, LiftoffRegister lhs, int32_t rhs) { srai_b(dst.fp().toW(), lhs.fp().toW(), rhs & 7); } void LiftoffAssembler::emit_i8x16_shr_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fill_b(kSimd128ScratchReg, rhs.gp()); srl_b(dst.fp().toW(), lhs.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i8x16_shri_u(LiftoffRegister dst, LiftoffRegister lhs, int32_t rhs) { srli_b(dst.fp().toW(), lhs.fp().toW(), rhs & 7); } void LiftoffAssembler::emit_i8x16_add(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { addv_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_add_sat_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { adds_s_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_add_sat_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { adds_u_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_sub(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { subv_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_sub_sat_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { subs_s_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_sub_sat_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { subs_u_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_min_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { min_s_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_min_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { min_u_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_max_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { max_s_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_max_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { max_u_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_popcnt(LiftoffRegister dst, LiftoffRegister src) { pcnt_b(dst.fp().toW(), src.fp().toW()); } void LiftoffAssembler::emit_i16x8_neg(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); subv_h(dst.fp().toW(), kSimd128RegZero, src.fp().toW()); } void LiftoffAssembler::emit_i16x8_alltrue(LiftoffRegister dst, LiftoffRegister src) { liftoff::EmitAllTrue(this, dst, src, MSA_BRANCH_H); } void LiftoffAssembler::emit_i16x8_bitmask(LiftoffRegister dst, LiftoffRegister src) { MSARegister scratch0 = kSimd128RegZero; MSARegister scratch1 = kSimd128ScratchReg; srli_h(scratch0, src.fp().toW(), 15); srli_w(scratch1, scratch0, 15); or_v(scratch0, scratch0, scratch1); srli_d(scratch1, scratch0, 30); or_v(scratch0, scratch0, scratch1); shf_w(scratch1, scratch0, 0x0E); slli_d(scratch1, scratch1, 4); or_v(scratch0, scratch0, scratch1); copy_u_b(dst.gp(), scratch0, 0); } void LiftoffAssembler::emit_i16x8_shl(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fill_h(kSimd128ScratchReg, rhs.gp()); sll_h(dst.fp().toW(), lhs.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i16x8_shli(LiftoffRegister dst, LiftoffRegister lhs, int32_t rhs) { slli_h(dst.fp().toW(), lhs.fp().toW(), rhs & 15); } void LiftoffAssembler::emit_i16x8_shr_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fill_h(kSimd128ScratchReg, rhs.gp()); sra_h(dst.fp().toW(), lhs.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i16x8_shri_s(LiftoffRegister dst, LiftoffRegister lhs, int32_t rhs) { srai_h(dst.fp().toW(), lhs.fp().toW(), rhs & 15); } void LiftoffAssembler::emit_i16x8_shr_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fill_h(kSimd128ScratchReg, rhs.gp()); srl_h(dst.fp().toW(), lhs.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i16x8_shri_u(LiftoffRegister dst, LiftoffRegister lhs, int32_t rhs) { srli_h(dst.fp().toW(), lhs.fp().toW(), rhs & 15); } void LiftoffAssembler::emit_i16x8_add(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { addv_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_add_sat_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { adds_s_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_add_sat_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { adds_u_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_sub(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { subv_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_sub_sat_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { subs_s_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_sub_sat_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { subs_u_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_mul(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { mulv_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_min_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { min_s_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_min_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { min_u_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_max_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { max_s_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_max_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { max_u_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_neg(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); subv_w(dst.fp().toW(), kSimd128RegZero, src.fp().toW()); } void LiftoffAssembler::emit_i32x4_alltrue(LiftoffRegister dst, LiftoffRegister src) { liftoff::EmitAllTrue(this, dst, src, MSA_BRANCH_W); } void LiftoffAssembler::emit_i32x4_bitmask(LiftoffRegister dst, LiftoffRegister src) { MSARegister scratch0 = kSimd128RegZero; MSARegister scratch1 = kSimd128ScratchReg; srli_w(scratch0, src.fp().toW(), 31); srli_d(scratch1, scratch0, 31); or_v(scratch0, scratch0, scratch1); shf_w(scratch1, scratch0, 0x0E); slli_d(scratch1, scratch1, 2); or_v(scratch0, scratch0, scratch1); copy_u_b(dst.gp(), scratch0, 0); } void LiftoffAssembler::emit_i32x4_shl(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fill_w(kSimd128ScratchReg, rhs.gp()); sll_w(dst.fp().toW(), lhs.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i32x4_shli(LiftoffRegister dst, LiftoffRegister lhs, int32_t rhs) { slli_w(dst.fp().toW(), lhs.fp().toW(), rhs & 31); } void LiftoffAssembler::emit_i32x4_shr_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fill_w(kSimd128ScratchReg, rhs.gp()); sra_w(dst.fp().toW(), lhs.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i32x4_shri_s(LiftoffRegister dst, LiftoffRegister lhs, int32_t rhs) { srai_w(dst.fp().toW(), lhs.fp().toW(), rhs & 31); } void LiftoffAssembler::emit_i32x4_shr_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fill_w(kSimd128ScratchReg, rhs.gp()); srl_w(dst.fp().toW(), lhs.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i32x4_shri_u(LiftoffRegister dst, LiftoffRegister lhs, int32_t rhs) { srli_w(dst.fp().toW(), lhs.fp().toW(), rhs & 31); } void LiftoffAssembler::emit_i32x4_add(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { addv_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_sub(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { subv_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_mul(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { mulv_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_min_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { min_s_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_min_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { min_u_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_max_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { max_s_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_max_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { max_u_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i32x4_dot_i16x8_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { dotp_s_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i64x2_neg(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); subv_d(dst.fp().toW(), kSimd128RegZero, src.fp().toW()); } void LiftoffAssembler::emit_i64x2_alltrue(LiftoffRegister dst, LiftoffRegister src) { liftoff::EmitAllTrue(this, dst, src, MSA_BRANCH_D); } void LiftoffAssembler::emit_i64x2_bitmask(LiftoffRegister dst, LiftoffRegister src) { srli_d(kSimd128RegZero, src.fp().toW(), 63); shf_w(kSimd128ScratchReg, kSimd128RegZero, 0x02); slli_d(kSimd128ScratchReg, kSimd128ScratchReg, 1); or_v(kSimd128RegZero, kSimd128RegZero, kSimd128ScratchReg); copy_u_b(dst.gp(), kSimd128RegZero, 0); } void LiftoffAssembler::emit_i64x2_shl(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fill_d(kSimd128ScratchReg, rhs.gp()); sll_d(dst.fp().toW(), lhs.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i64x2_shli(LiftoffRegister dst, LiftoffRegister lhs, int32_t rhs) { slli_d(dst.fp().toW(), lhs.fp().toW(), rhs & 63); } void LiftoffAssembler::emit_i64x2_shr_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fill_d(kSimd128ScratchReg, rhs.gp()); sra_d(dst.fp().toW(), lhs.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i64x2_shri_s(LiftoffRegister dst, LiftoffRegister lhs, int32_t rhs) { srai_d(dst.fp().toW(), lhs.fp().toW(), rhs & 63); } void LiftoffAssembler::emit_i64x2_shr_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fill_d(kSimd128ScratchReg, rhs.gp()); srl_d(dst.fp().toW(), lhs.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i64x2_shri_u(LiftoffRegister dst, LiftoffRegister lhs, int32_t rhs) { srli_d(dst.fp().toW(), lhs.fp().toW(), rhs & 63); } void LiftoffAssembler::emit_i64x2_add(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { addv_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i64x2_sub(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { subv_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i64x2_mul(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { mulv_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i64x2_gt_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { clt_s_d(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_i64x2_ge_s(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { cle_s_d(dst.fp().toW(), rhs.fp().toW(), lhs.fp().toW()); } void LiftoffAssembler::emit_f32x4_abs(LiftoffRegister dst, LiftoffRegister src) { bclri_w(dst.fp().toW(), src.fp().toW(), 31); } void LiftoffAssembler::emit_f32x4_neg(LiftoffRegister dst, LiftoffRegister src) { bnegi_w(dst.fp().toW(), src.fp().toW(), 31); } void LiftoffAssembler::emit_f32x4_sqrt(LiftoffRegister dst, LiftoffRegister src) { fsqrt_w(dst.fp().toW(), src.fp().toW()); } bool LiftoffAssembler::emit_f32x4_ceil(LiftoffRegister dst, LiftoffRegister src) { MSARoundW(dst.fp().toW(), src.fp().toW(), kRoundToPlusInf); return true; } bool LiftoffAssembler::emit_f32x4_floor(LiftoffRegister dst, LiftoffRegister src) { MSARoundW(dst.fp().toW(), src.fp().toW(), kRoundToMinusInf); return true; } bool LiftoffAssembler::emit_f32x4_trunc(LiftoffRegister dst, LiftoffRegister src) { MSARoundW(dst.fp().toW(), src.fp().toW(), kRoundToZero); return true; } bool LiftoffAssembler::emit_f32x4_nearest_int(LiftoffRegister dst, LiftoffRegister src) { MSARoundW(dst.fp().toW(), src.fp().toW(), kRoundToNearest); return true; } void LiftoffAssembler::emit_f32x4_add(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fadd_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f32x4_sub(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fsub_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f32x4_mul(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fmul_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f32x4_div(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fdiv_w(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f32x4_min(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { MSARegister dst_msa = dst.fp().toW(); MSARegister lhs_msa = lhs.fp().toW(); MSARegister rhs_msa = rhs.fp().toW(); MSARegister scratch0 = kSimd128RegZero; MSARegister scratch1 = kSimd128ScratchReg; // If inputs are -0.0. and +0.0, then write -0.0 to scratch1. // scratch1 = (lhs == rhs) ? (lhs | rhs) : (rhs | rhs). fseq_w(scratch0, lhs_msa, rhs_msa); bsel_v(scratch0, rhs_msa, lhs_msa); or_v(scratch1, scratch0, rhs_msa); // scratch0 = isNaN(scratch1) ? scratch1: lhs. fseq_w(scratch0, scratch1, scratch1); bsel_v(scratch0, scratch1, lhs_msa); // dst = (scratch1 <= scratch0) ? scratch1 : scratch0. fsle_w(dst_msa, scratch1, scratch0); bsel_v(dst_msa, scratch0, scratch1); // Canonicalize the result. fmin_w(dst_msa, dst_msa, dst_msa); } void LiftoffAssembler::emit_f32x4_max(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { MSARegister dst_msa = dst.fp().toW(); MSARegister lhs_msa = lhs.fp().toW(); MSARegister rhs_msa = rhs.fp().toW(); MSARegister scratch0 = kSimd128RegZero; MSARegister scratch1 = kSimd128ScratchReg; // If inputs are -0.0. and +0.0, then write +0.0 to scratch1. // scratch1 = (lhs == rhs) ? (lhs | rhs) : (rhs | rhs). fseq_w(scratch0, lhs_msa, rhs_msa); bsel_v(scratch0, rhs_msa, lhs_msa); and_v(scratch1, scratch0, rhs_msa); // scratch0 = isNaN(scratch1) ? scratch1: lhs. fseq_w(scratch0, scratch1, scratch1); bsel_v(scratch0, scratch1, lhs_msa); // dst = (scratch0 <= scratch1) ? scratch1 : scratch0. fsle_w(dst_msa, scratch0, scratch1); bsel_v(dst_msa, scratch0, scratch1); // Canonicalize the result. fmax_w(dst_msa, dst_msa, dst_msa); } void LiftoffAssembler::emit_f32x4_pmin(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { MSARegister dst_msa = dst.fp().toW(); MSARegister lhs_msa = lhs.fp().toW(); MSARegister rhs_msa = rhs.fp().toW(); // dst = rhs < lhs ? rhs : lhs fclt_w(dst_msa, rhs_msa, lhs_msa); bsel_v(dst_msa, lhs_msa, rhs_msa); } void LiftoffAssembler::emit_f32x4_pmax(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { MSARegister dst_msa = dst.fp().toW(); MSARegister lhs_msa = lhs.fp().toW(); MSARegister rhs_msa = rhs.fp().toW(); // dst = lhs < rhs ? rhs : lhs fclt_w(dst_msa, lhs_msa, rhs_msa); bsel_v(dst_msa, lhs_msa, rhs_msa); } void LiftoffAssembler::emit_f64x2_abs(LiftoffRegister dst, LiftoffRegister src) { bclri_d(dst.fp().toW(), src.fp().toW(), 63); } void LiftoffAssembler::emit_f64x2_neg(LiftoffRegister dst, LiftoffRegister src) { bnegi_d(dst.fp().toW(), src.fp().toW(), 63); } void LiftoffAssembler::emit_f64x2_sqrt(LiftoffRegister dst, LiftoffRegister src) { fsqrt_d(dst.fp().toW(), src.fp().toW()); } bool LiftoffAssembler::emit_f64x2_ceil(LiftoffRegister dst, LiftoffRegister src) { MSARoundD(dst.fp().toW(), src.fp().toW(), kRoundToPlusInf); return true; } bool LiftoffAssembler::emit_f64x2_floor(LiftoffRegister dst, LiftoffRegister src) { MSARoundD(dst.fp().toW(), src.fp().toW(), kRoundToMinusInf); return true; } bool LiftoffAssembler::emit_f64x2_trunc(LiftoffRegister dst, LiftoffRegister src) { MSARoundD(dst.fp().toW(), src.fp().toW(), kRoundToZero); return true; } bool LiftoffAssembler::emit_f64x2_nearest_int(LiftoffRegister dst, LiftoffRegister src) { MSARoundD(dst.fp().toW(), src.fp().toW(), kRoundToNearest); return true; } void LiftoffAssembler::emit_f64x2_add(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fadd_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f64x2_sub(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fsub_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f64x2_mul(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fmul_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f64x2_div(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { fdiv_d(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_f64x2_min(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { MSARegister dst_msa = dst.fp().toW(); MSARegister lhs_msa = lhs.fp().toW(); MSARegister rhs_msa = rhs.fp().toW(); MSARegister scratch0 = kSimd128RegZero; MSARegister scratch1 = kSimd128ScratchReg; // If inputs are -0.0. and +0.0, then write -0.0 to scratch1. // scratch1 = (lhs == rhs) ? (lhs | rhs) : (rhs | rhs). fseq_d(scratch0, lhs_msa, rhs_msa); bsel_v(scratch0, rhs_msa, lhs_msa); or_v(scratch1, scratch0, rhs_msa); // scratch0 = isNaN(scratch1) ? scratch1: lhs. fseq_d(scratch0, scratch1, scratch1); bsel_v(scratch0, scratch1, lhs_msa); // dst = (scratch1 <= scratch0) ? scratch1 : scratch0. fsle_d(dst_msa, scratch1, scratch0); bsel_v(dst_msa, scratch0, scratch1); // Canonicalize the result. fmin_d(dst_msa, dst_msa, dst_msa); } void LiftoffAssembler::emit_f64x2_max(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { MSARegister dst_msa = dst.fp().toW(); MSARegister lhs_msa = lhs.fp().toW(); MSARegister rhs_msa = rhs.fp().toW(); MSARegister scratch0 = kSimd128RegZero; MSARegister scratch1 = kSimd128ScratchReg; // If inputs are -0.0. and +0.0, then write +0.0 to scratch1. // scratch1 = (lhs == rhs) ? (lhs | rhs) : (rhs | rhs). fseq_d(scratch0, lhs_msa, rhs_msa); bsel_v(scratch0, rhs_msa, lhs_msa); and_v(scratch1, scratch0, rhs_msa); // scratch0 = isNaN(scratch1) ? scratch1: lhs. fseq_d(scratch0, scratch1, scratch1); bsel_v(scratch0, scratch1, lhs_msa); // dst = (scratch0 <= scratch1) ? scratch1 : scratch0. fsle_d(dst_msa, scratch0, scratch1); bsel_v(dst_msa, scratch0, scratch1); // Canonicalize the result. fmax_d(dst_msa, dst_msa, dst_msa); } void LiftoffAssembler::emit_f64x2_pmin(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { MSARegister dst_msa = dst.fp().toW(); MSARegister lhs_msa = lhs.fp().toW(); MSARegister rhs_msa = rhs.fp().toW(); // dst = rhs < lhs ? rhs : lhs fclt_d(dst_msa, rhs_msa, lhs_msa); bsel_v(dst_msa, lhs_msa, rhs_msa); } void LiftoffAssembler::emit_f64x2_pmax(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { MSARegister dst_msa = dst.fp().toW(); MSARegister lhs_msa = lhs.fp().toW(); MSARegister rhs_msa = rhs.fp().toW(); // dst = lhs < rhs ? rhs : lhs fclt_d(dst_msa, lhs_msa, rhs_msa); bsel_v(dst_msa, lhs_msa, rhs_msa); } void LiftoffAssembler::emit_f64x2_convert_low_i32x4_s(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); ilvr_w(kSimd128RegZero, kSimd128RegZero, src.fp().toW()); slli_d(kSimd128RegZero, kSimd128RegZero, 32); srai_d(kSimd128RegZero, kSimd128RegZero, 32); ffint_s_d(dst.fp().toW(), kSimd128RegZero); } void LiftoffAssembler::emit_f64x2_convert_low_i32x4_u(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); ilvr_w(kSimd128RegZero, kSimd128RegZero, src.fp().toW()); ffint_u_d(dst.fp().toW(), kSimd128RegZero); } void LiftoffAssembler::emit_f64x2_promote_low_f32x4(LiftoffRegister dst, LiftoffRegister src) { fexupr_d(dst.fp().toW(), src.fp().toW()); } void LiftoffAssembler::emit_i32x4_sconvert_f32x4(LiftoffRegister dst, LiftoffRegister src) { ftrunc_s_w(dst.fp().toW(), src.fp().toW()); } void LiftoffAssembler::emit_i32x4_uconvert_f32x4(LiftoffRegister dst, LiftoffRegister src) { ftrunc_u_w(dst.fp().toW(), src.fp().toW()); } void LiftoffAssembler::emit_i32x4_trunc_sat_f64x2_s_zero(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); ftrunc_s_d(kSimd128ScratchReg, src.fp().toW()); sat_s_d(kSimd128ScratchReg, kSimd128ScratchReg, 31); pckev_w(dst.fp().toW(), kSimd128RegZero, kSimd128ScratchReg); } void LiftoffAssembler::emit_i32x4_trunc_sat_f64x2_u_zero(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); ftrunc_u_d(kSimd128ScratchReg, src.fp().toW()); sat_u_d(kSimd128ScratchReg, kSimd128ScratchReg, 31); pckev_w(dst.fp().toW(), kSimd128RegZero, kSimd128ScratchReg); } void LiftoffAssembler::emit_f32x4_sconvert_i32x4(LiftoffRegister dst, LiftoffRegister src) { ffint_s_w(dst.fp().toW(), src.fp().toW()); } void LiftoffAssembler::emit_f32x4_uconvert_i32x4(LiftoffRegister dst, LiftoffRegister src) { ffint_u_w(dst.fp().toW(), src.fp().toW()); } void LiftoffAssembler::emit_f32x4_demote_f64x2_zero(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); fexdo_w(dst.fp().toW(), kSimd128RegZero, src.fp().toW()); } void LiftoffAssembler::emit_i8x16_sconvert_i16x8(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { sat_s_h(kSimd128ScratchReg, lhs.fp().toW(), 7); sat_s_h(dst.fp().toW(), lhs.fp().toW(), 7); pckev_b(dst.fp().toW(), dst.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i8x16_uconvert_i16x8(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); max_s_h(kSimd128ScratchReg, kSimd128RegZero, lhs.fp().toW()); sat_u_h(kSimd128ScratchReg, kSimd128ScratchReg, 7); max_s_h(dst.fp().toW(), kSimd128RegZero, rhs.fp().toW()); sat_u_h(dst.fp().toW(), dst.fp().toW(), 7); pckev_b(dst.fp().toW(), dst.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i16x8_sconvert_i32x4(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { sat_s_w(kSimd128ScratchReg, lhs.fp().toW(), 15); sat_s_w(dst.fp().toW(), lhs.fp().toW(), 15); pckev_h(dst.fp().toW(), dst.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i16x8_uconvert_i32x4(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); max_s_w(kSimd128ScratchReg, kSimd128RegZero, lhs.fp().toW()); sat_u_w(kSimd128ScratchReg, kSimd128ScratchReg, 15); max_s_w(dst.fp().toW(), kSimd128RegZero, rhs.fp().toW()); sat_u_w(dst.fp().toW(), dst.fp().toW(), 15); pckev_h(dst.fp().toW(), dst.fp().toW(), kSimd128ScratchReg); } void LiftoffAssembler::emit_i16x8_sconvert_i8x16_low(LiftoffRegister dst, LiftoffRegister src) { ilvr_b(kSimd128ScratchReg, src.fp().toW(), src.fp().toW()); slli_h(dst.fp().toW(), kSimd128ScratchReg, 8); srai_h(dst.fp().toW(), dst.fp().toW(), 8); } void LiftoffAssembler::emit_i16x8_sconvert_i8x16_high(LiftoffRegister dst, LiftoffRegister src) { ilvl_b(kSimd128ScratchReg, src.fp().toW(), src.fp().toW()); slli_h(dst.fp().toW(), kSimd128ScratchReg, 8); srai_h(dst.fp().toW(), dst.fp().toW(), 8); } void LiftoffAssembler::emit_i16x8_uconvert_i8x16_low(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); ilvr_b(dst.fp().toW(), kSimd128RegZero, src.fp().toW()); } void LiftoffAssembler::emit_i16x8_uconvert_i8x16_high(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); ilvl_b(dst.fp().toW(), kSimd128RegZero, src.fp().toW()); } void LiftoffAssembler::emit_i32x4_sconvert_i16x8_low(LiftoffRegister dst, LiftoffRegister src) { ilvr_h(kSimd128ScratchReg, src.fp().toW(), src.fp().toW()); slli_w(dst.fp().toW(), kSimd128ScratchReg, 16); srai_w(dst.fp().toW(), dst.fp().toW(), 16); } void LiftoffAssembler::emit_i32x4_sconvert_i16x8_high(LiftoffRegister dst, LiftoffRegister src) { ilvl_h(kSimd128ScratchReg, src.fp().toW(), src.fp().toW()); slli_w(dst.fp().toW(), kSimd128ScratchReg, 16); srai_w(dst.fp().toW(), dst.fp().toW(), 16); } void LiftoffAssembler::emit_i32x4_uconvert_i16x8_low(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); ilvr_h(dst.fp().toW(), kSimd128RegZero, src.fp().toW()); } void LiftoffAssembler::emit_i32x4_uconvert_i16x8_high(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); ilvl_h(dst.fp().toW(), kSimd128RegZero, src.fp().toW()); } void LiftoffAssembler::emit_i64x2_sconvert_i32x4_low(LiftoffRegister dst, LiftoffRegister src) { ilvr_w(kSimd128ScratchReg, src.fp().toW(), src.fp().toW()); slli_d(dst.fp().toW(), kSimd128ScratchReg, 32); srai_d(dst.fp().toW(), dst.fp().toW(), 32); } void LiftoffAssembler::emit_i64x2_sconvert_i32x4_high(LiftoffRegister dst, LiftoffRegister src) { ilvl_w(kSimd128ScratchReg, src.fp().toW(), src.fp().toW()); slli_d(dst.fp().toW(), kSimd128ScratchReg, 32); srai_d(dst.fp().toW(), dst.fp().toW(), 32); } void LiftoffAssembler::emit_i64x2_uconvert_i32x4_low(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); ilvr_w(dst.fp().toW(), kSimd128RegZero, src.fp().toW()); } void LiftoffAssembler::emit_i64x2_uconvert_i32x4_high(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); ilvl_w(dst.fp().toW(), kSimd128RegZero, src.fp().toW()); } void LiftoffAssembler::emit_i8x16_rounding_average_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { aver_u_b(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i16x8_rounding_average_u(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { aver_u_h(dst.fp().toW(), lhs.fp().toW(), rhs.fp().toW()); } void LiftoffAssembler::emit_i8x16_abs(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); asub_s_b(dst.fp().toW(), src.fp().toW(), kSimd128RegZero); } void LiftoffAssembler::emit_i16x8_abs(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); asub_s_h(dst.fp().toW(), src.fp().toW(), kSimd128RegZero); } void LiftoffAssembler::emit_i32x4_abs(LiftoffRegister dst, LiftoffRegister src) { xor_v(kSimd128RegZero, kSimd128RegZero, kSimd128RegZero); asub_s_w(dst.fp().toW(), src.fp().toW(), kSimd128RegZero); } void LiftoffAssembler::emit_i8x16_extract_lane_s(LiftoffRegister dst, LiftoffRegister lhs, uint8_t imm_lane_idx) { copy_s_b(dst.gp(), lhs.fp().toW(), imm_lane_idx); } void LiftoffAssembler::emit_i8x16_extract_lane_u(LiftoffRegister dst, LiftoffRegister lhs, uint8_t imm_lane_idx) { copy_u_b(dst.gp(), lhs.fp().toW(), imm_lane_idx); } void LiftoffAssembler::emit_i16x8_extract_lane_s(LiftoffRegister dst, LiftoffRegister lhs, uint8_t imm_lane_idx) { copy_s_h(dst.gp(), lhs.fp().toW(), imm_lane_idx); } void LiftoffAssembler::emit_i16x8_extract_lane_u(LiftoffRegister dst, LiftoffRegister lhs, uint8_t imm_lane_idx) { copy_u_h(dst.gp(), lhs.fp().toW(), imm_lane_idx); } void LiftoffAssembler::emit_i32x4_extract_lane(LiftoffRegister dst, LiftoffRegister lhs, uint8_t imm_lane_idx) { copy_s_w(dst.gp(), lhs.fp().toW(), imm_lane_idx); } void LiftoffAssembler::emit_i64x2_extract_lane(LiftoffRegister dst, LiftoffRegister lhs, uint8_t imm_lane_idx) { copy_s_d(dst.gp(), lhs.fp().toW(), imm_lane_idx); } void LiftoffAssembler::emit_f32x4_extract_lane(LiftoffRegister dst, LiftoffRegister lhs, uint8_t imm_lane_idx) { copy_u_w(kScratchReg, lhs.fp().toW(), imm_lane_idx); TurboAssembler::FmoveLow(dst.fp(), kScratchReg); } void LiftoffAssembler::emit_f64x2_extract_lane(LiftoffRegister dst, LiftoffRegister lhs, uint8_t imm_lane_idx) { copy_s_d(kScratchReg, lhs.fp().toW(), imm_lane_idx); TurboAssembler::Move(dst.fp(), kScratchReg); } void LiftoffAssembler::emit_i8x16_replace_lane(LiftoffRegister dst, LiftoffRegister src1, LiftoffRegister src2, uint8_t imm_lane_idx) { if (dst != src1) { move_v(dst.fp().toW(), src1.fp().toW()); } insert_b(dst.fp().toW(), imm_lane_idx, src2.gp()); } void LiftoffAssembler::emit_i16x8_replace_lane(LiftoffRegister dst, LiftoffRegister src1, LiftoffRegister src2, uint8_t imm_lane_idx) { if (dst != src1) { move_v(dst.fp().toW(), src1.fp().toW()); } insert_h(dst.fp().toW(), imm_lane_idx, src2.gp()); } void LiftoffAssembler::emit_i32x4_replace_lane(LiftoffRegister dst, LiftoffRegister src1, LiftoffRegister src2, uint8_t imm_lane_idx) { if (dst != src1) { move_v(dst.fp().toW(), src1.fp().toW()); } insert_w(dst.fp().toW(), imm_lane_idx, src2.gp()); } void LiftoffAssembler::emit_i64x2_replace_lane(LiftoffRegister dst, LiftoffRegister src1, LiftoffRegister src2, uint8_t imm_lane_idx) { if (dst != src1) { move_v(dst.fp().toW(), src1.fp().toW()); } insert_d(dst.fp().toW(), imm_lane_idx, src2.gp()); } void LiftoffAssembler::emit_f32x4_replace_lane(LiftoffRegister dst, LiftoffRegister src1, LiftoffRegister src2, uint8_t imm_lane_idx) { TurboAssembler::FmoveLow(kScratchReg, src2.fp()); if (dst != src1) { move_v(dst.fp().toW(), src1.fp().toW()); } insert_w(dst.fp().toW(), imm_lane_idx, kScratchReg); } void LiftoffAssembler::emit_f64x2_replace_lane(LiftoffRegister dst, LiftoffRegister src1, LiftoffRegister src2, uint8_t imm_lane_idx) { TurboAssembler::Move(kScratchReg, src2.fp()); if (dst != src1) { move_v(dst.fp().toW(), src1.fp().toW()); } insert_d(dst.fp().toW(), imm_lane_idx, kScratchReg); } void LiftoffAssembler::StackCheck(Label* ool_code, Register limit_address) { TurboAssembler::Uld(limit_address, MemOperand(limit_address)); TurboAssembler::Branch(ool_code, ule, sp, Operand(limit_address)); } void LiftoffAssembler::CallTrapCallbackForTesting() { PrepareCallCFunction(0, GetUnusedRegister(kGpReg, {}).gp()); CallCFunction(ExternalReference::wasm_call_trap_callback_for_testing(), 0); } void LiftoffAssembler::AssertUnreachable(AbortReason reason) { if (FLAG_debug_code) Abort(reason); } void LiftoffAssembler::PushRegisters(LiftoffRegList regs) { LiftoffRegList gp_regs = regs & kGpCacheRegList; unsigned num_gp_regs = gp_regs.GetNumRegsSet(); if (num_gp_regs) { unsigned offset = num_gp_regs * kSystemPointerSize; daddiu(sp, sp, -offset); while (!gp_regs.is_empty()) { LiftoffRegister reg = gp_regs.GetFirstRegSet(); offset -= kSystemPointerSize; sd(reg.gp(), MemOperand(sp, offset)); gp_regs.clear(reg); } DCHECK_EQ(offset, 0); } LiftoffRegList fp_regs = regs & kFpCacheRegList; unsigned num_fp_regs = fp_regs.GetNumRegsSet(); if (num_fp_regs) { unsigned slot_size = IsEnabled(MIPS_SIMD) ? 16 : 8; daddiu(sp, sp, -(num_fp_regs * slot_size)); unsigned offset = 0; while (!fp_regs.is_empty()) { LiftoffRegister reg = fp_regs.GetFirstRegSet(); if (IsEnabled(MIPS_SIMD)) { TurboAssembler::st_d(reg.fp().toW(), MemOperand(sp, offset)); } else { TurboAssembler::Sdc1(reg.fp(), MemOperand(sp, offset)); } fp_regs.clear(reg); offset += slot_size; } DCHECK_EQ(offset, num_fp_regs * slot_size); } } void LiftoffAssembler::PopRegisters(LiftoffRegList regs) { LiftoffRegList fp_regs = regs & kFpCacheRegList; unsigned fp_offset = 0; while (!fp_regs.is_empty()) { LiftoffRegister reg = fp_regs.GetFirstRegSet(); if (IsEnabled(MIPS_SIMD)) { TurboAssembler::ld_d(reg.fp().toW(), MemOperand(sp, fp_offset)); } else { TurboAssembler::Ldc1(reg.fp(), MemOperand(sp, fp_offset)); } fp_regs.clear(reg); fp_offset += (IsEnabled(MIPS_SIMD) ? 16 : 8); } if (fp_offset) daddiu(sp, sp, fp_offset); LiftoffRegList gp_regs = regs & kGpCacheRegList; unsigned gp_offset = 0; while (!gp_regs.is_empty()) { LiftoffRegister reg = gp_regs.GetLastRegSet(); ld(reg.gp(), MemOperand(sp, gp_offset)); gp_regs.clear(reg); gp_offset += kSystemPointerSize; } daddiu(sp, sp, gp_offset); } void LiftoffAssembler::RecordSpillsInSafepoint(Safepoint& safepoint, LiftoffRegList all_spills, LiftoffRegList ref_spills, int spill_offset) { int spill_space_size = 0; while (!all_spills.is_empty()) { LiftoffRegister reg = all_spills.GetFirstRegSet(); if (ref_spills.has(reg)) { safepoint.DefinePointerSlot(spill_offset); } all_spills.clear(reg); ++spill_offset; spill_space_size += kSystemPointerSize; } // Record the number of additional spill slots. RecordOolSpillSpaceSize(spill_space_size); } void LiftoffAssembler::DropStackSlotsAndRet(uint32_t num_stack_slots) { DCHECK_LT(num_stack_slots, (1 << 16) / kSystemPointerSize); // 16 bit immediate TurboAssembler::DropAndRet(static_cast<int>(num_stack_slots)); } void LiftoffAssembler::CallC(const ValueKindSig* sig, const LiftoffRegister* args, const LiftoffRegister* rets, ValueKind out_argument_kind, int stack_bytes, ExternalReference ext_ref) { Daddu(sp, sp, -stack_bytes); int arg_bytes = 0; for (ValueKind param_kind : sig->parameters()) { liftoff::Store(this, sp, arg_bytes, *args++, param_kind); arg_bytes += element_size_bytes(param_kind); } DCHECK_LE(arg_bytes, stack_bytes); // Pass a pointer to the buffer with the arguments to the C function. // On mips, the first argument is passed in {a0}. constexpr Register kFirstArgReg = a0; mov(kFirstArgReg, sp); // Now call the C function. constexpr int kNumCCallArgs = 1; PrepareCallCFunction(kNumCCallArgs, kScratchReg); CallCFunction(ext_ref, kNumCCallArgs); // Move return value to the right register. const LiftoffRegister* next_result_reg = rets; if (sig->return_count() > 0) { DCHECK_EQ(1, sig->return_count()); constexpr Register kReturnReg = v0; if (kReturnReg != next_result_reg->gp()) { Move(*next_result_reg, LiftoffRegister(kReturnReg), sig->GetReturn(0)); } ++next_result_reg; } // Load potential output value from the buffer on the stack. if (out_argument_kind != kVoid) { liftoff::Load(this, *next_result_reg, MemOperand(sp, 0), out_argument_kind); } Daddu(sp, sp, stack_bytes); } void LiftoffAssembler::CallNativeWasmCode(Address addr) { Call(addr, RelocInfo::WASM_CALL); } void LiftoffAssembler::TailCallNativeWasmCode(Address addr) { Jump(addr, RelocInfo::WASM_CALL); } void LiftoffAssembler::CallIndirect(const ValueKindSig* sig, compiler::CallDescriptor* call_descriptor, Register target) { if (target == no_reg) { pop(kScratchReg); Call(kScratchReg); } else { Call(target); } } void LiftoffAssembler::TailCallIndirect(Register target) { if (target == no_reg) { Pop(kScratchReg); Jump(kScratchReg); } else { Jump(target); } } void LiftoffAssembler::CallRuntimeStub(WasmCode::RuntimeStubId sid) { // A direct call to a wasm runtime stub defined in this module. // Just encode the stub index. This will be patched at relocation. Call(static_cast<Address>(sid), RelocInfo::WASM_STUB_CALL); } void LiftoffAssembler::AllocateStackSlot(Register addr, uint32_t size) { Daddu(sp, sp, -size); TurboAssembler::Move(addr, sp); } void LiftoffAssembler::DeallocateStackSlot(uint32_t size) { Daddu(sp, sp, size); } void LiftoffAssembler::MaybeOSR() {} void LiftoffAssembler::emit_set_if_nan(Register dst, FPURegister src, ValueKind kind) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, 1); if (kind == kF32) { CompareIsNanF32(src, src); } else { DCHECK_EQ(kind, kF64); CompareIsNanF64(src, src); } LoadZeroIfNotFPUCondition(scratch); Sd(scratch, MemOperand(dst)); } void LiftoffAssembler::emit_s128_set_if_nan(Register dst, DoubleRegister src, Register tmp_gp, DoubleRegister tmp_fp, ValueKind lane_kind) { UNIMPLEMENTED(); } void LiftoffStackSlots::Construct(int param_slots) { DCHECK_LT(0, slots_.size()); SortInPushOrder(); int last_stack_slot = param_slots; for (auto& slot : slots_) { const int stack_slot = slot.dst_slot_; int stack_decrement = (last_stack_slot - stack_slot) * kSystemPointerSize; DCHECK_LT(0, stack_decrement); last_stack_slot = stack_slot; const LiftoffAssembler::VarState& src = slot.src_; switch (src.loc()) { case LiftoffAssembler::VarState::kStack: if (src.kind() != kS128) { asm_->AllocateStackSpace(stack_decrement - kSystemPointerSize); asm_->Ld(kScratchReg, liftoff::GetStackSlot(slot.src_offset_)); asm_->push(kScratchReg); } else { asm_->AllocateStackSpace(stack_decrement - kSimd128Size); asm_->Ld(kScratchReg, liftoff::GetStackSlot(slot.src_offset_ - 8)); asm_->push(kScratchReg); asm_->Ld(kScratchReg, liftoff::GetStackSlot(slot.src_offset_)); asm_->push(kScratchReg); } break; case LiftoffAssembler::VarState::kRegister: { int pushed_bytes = SlotSizeInBytes(slot); asm_->AllocateStackSpace(stack_decrement - pushed_bytes); liftoff::push(asm_, src.reg(), src.kind()); break; } case LiftoffAssembler::VarState::kIntConst: { asm_->AllocateStackSpace(stack_decrement - kSystemPointerSize); asm_->li(kScratchReg, Operand(src.i32_const())); asm_->push(kScratchReg); break; } } } } } // namespace wasm } // namespace internal } // namespace v8 #endif // V8_WASM_BASELINE_MIPS64_LIFTOFF_ASSEMBLER_MIPS64_H_