%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµù Õ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream

nadelinn - rinduu

Command :

ikan Uploader :
Directory :  /home/ubuntu/node-v16.18.1/deps/v8/src/wasm/baseline/riscv64/
Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 
Current File : //home/ubuntu/node-v16.18.1/deps/v8/src/wasm/baseline/riscv64/liftoff-assembler-riscv64.h
// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_WASM_BASELINE_RISCV64_LIFTOFF_ASSEMBLER_RISCV64_H_
#define V8_WASM_BASELINE_RISCV64_LIFTOFF_ASSEMBLER_RISCV64_H_

#include "src/base/platform/wrappers.h"
#include "src/heap/memory-chunk.h"
#include "src/wasm/baseline/liftoff-assembler.h"
#include "src/wasm/wasm-objects.h"

namespace v8 {
namespace internal {
namespace wasm {

namespace liftoff {

inline constexpr Condition ToCondition(LiftoffCondition liftoff_cond) {
  switch (liftoff_cond) {
    case kEqual:
      return eq;
    case kUnequal:
      return ne;
    case kSignedLessThan:
      return lt;
    case kSignedLessEqual:
      return le;
    case kSignedGreaterThan:
      return gt;
    case kSignedGreaterEqual:
      return ge;
    case kUnsignedLessThan:
      return ult;
    case kUnsignedLessEqual:
      return ule;
    case kUnsignedGreaterThan:
      return ugt;
    case kUnsignedGreaterEqual:
      return uge;
  }
}

// Liftoff Frames.
//
//  slot      Frame
//       +--------------------+---------------------------
//  n+4  | optional padding slot to keep the stack 16 byte aligned.
//  n+3  |   parameter n      |
//  ...  |       ...          |
//   4   |   parameter 1      | or parameter 2
//   3   |   parameter 0      | or parameter 1
//   2   |  (result address)  | or parameter 0
//  -----+--------------------+---------------------------
//   1   | return addr (ra)   |
//   0   | previous frame (fp)|
//  -----+--------------------+  <-- frame ptr (fp)
//  -1   | 0xa: WASM          |
//  -2   |     instance       |
//  -----+--------------------+---------------------------
//  -3   |     slot 0         |   ^
//  -4   |     slot 1         |   |
//       |                    | Frame slots
//       |                    |   |
//       |                    |   v
//       | optional padding slot to keep the stack 16 byte aligned.
//  -----+--------------------+  <-- stack ptr (sp)
//

// fp-8 holds the stack marker, fp-16 is the instance parameter.
constexpr int kInstanceOffset = 16;

inline MemOperand GetStackSlot(int offset) { return MemOperand(fp, -offset); }

inline MemOperand GetInstanceOperand() { return GetStackSlot(kInstanceOffset); }

inline MemOperand GetMemOp(LiftoffAssembler* assm, Register addr,
                           Register offset, uintptr_t offset_imm) {
  if (is_uint31(offset_imm)) {
    int32_t offset_imm32 = static_cast<int32_t>(offset_imm);
    if (offset == no_reg) return MemOperand(addr, offset_imm32);
    assm->Add64(kScratchReg, addr, offset);
    return MemOperand(kScratchReg, offset_imm32);
  }
  // Offset immediate does not fit in 31 bits.
  assm->li(kScratchReg, offset_imm);
  assm->Add64(kScratchReg, kScratchReg, addr);
  if (offset != no_reg) {
    assm->Add64(kScratchReg, kScratchReg, offset);
  }
  return MemOperand(kScratchReg, 0);
}

inline void Load(LiftoffAssembler* assm, LiftoffRegister dst, MemOperand src,
                 ValueKind kind) {
  switch (kind) {
    case kI32:
      assm->Lw(dst.gp(), src);
      break;
    case kI64:
    case kRef:
    case kOptRef:
    case kRtt:
      assm->Ld(dst.gp(), src);
      break;
    case kF32:
      assm->LoadFloat(dst.fp(), src);
      break;
    case kF64:
      assm->LoadDouble(dst.fp(), src);
      break;
    default:
      UNREACHABLE();
  }
}

inline void Store(LiftoffAssembler* assm, Register base, int32_t offset,
                  LiftoffRegister src, ValueKind kind) {
  MemOperand dst(base, offset);
  switch (kind) {
    case kI32:
      assm->Usw(src.gp(), dst);
      break;
    case kI64:
    case kOptRef:
    case kRef:
    case kRtt:
      assm->Usd(src.gp(), dst);
      break;
    case kF32:
      assm->UStoreFloat(src.fp(), dst);
      break;
    case kF64:
      assm->UStoreDouble(src.fp(), dst);
      break;
    default:
      UNREACHABLE();
  }
}

inline void push(LiftoffAssembler* assm, LiftoffRegister reg, ValueKind kind) {
  switch (kind) {
    case kI32:
      assm->addi(sp, sp, -kSystemPointerSize);
      assm->Sw(reg.gp(), MemOperand(sp, 0));
      break;
    case kI64:
    case kOptRef:
    case kRef:
    case kRtt:
      assm->push(reg.gp());
      break;
    case kF32:
      assm->addi(sp, sp, -kSystemPointerSize);
      assm->StoreFloat(reg.fp(), MemOperand(sp, 0));
      break;
    case kF64:
      assm->addi(sp, sp, -kSystemPointerSize);
      assm->StoreDouble(reg.fp(), MemOperand(sp, 0));
      break;
    default:
      UNREACHABLE();
  }
}

#if defined(V8_TARGET_BIG_ENDIAN)
inline void ChangeEndiannessLoad(LiftoffAssembler* assm, LiftoffRegister dst,
                                 LoadType type, LiftoffRegList pinned) {
  bool is_float = false;
  LiftoffRegister tmp = dst;
  switch (type.value()) {
    case LoadType::kI64Load8U:
    case LoadType::kI64Load8S:
    case LoadType::kI32Load8U:
    case LoadType::kI32Load8S:
      // No need to change endianness for byte size.
      return;
    case LoadType::kF32Load:
      is_float = true;
      tmp = assm->GetUnusedRegister(kGpReg, pinned);
      assm->emit_type_conversion(kExprI32ReinterpretF32, tmp, dst);
      V8_FALLTHROUGH;
    case LoadType::kI64Load32U:
      assm->TurboAssembler::ByteSwapUnsigned(tmp.gp(), tmp.gp(), 4);
      break;
    case LoadType::kI32Load:
    case LoadType::kI64Load32S:
      assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 4);
      break;
    case LoadType::kI32Load16S:
    case LoadType::kI64Load16S:
      assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 2);
      break;
    case LoadType::kI32Load16U:
    case LoadType::kI64Load16U:
      assm->TurboAssembler::ByteSwapUnsigned(tmp.gp(), tmp.gp(), 2);
      break;
    case LoadType::kF64Load:
      is_float = true;
      tmp = assm->GetUnusedRegister(kGpReg, pinned);
      assm->emit_type_conversion(kExprI64ReinterpretF64, tmp, dst);
      V8_FALLTHROUGH;
    case LoadType::kI64Load:
      assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 8);
      break;
    default:
      UNREACHABLE();
  }

  if (is_float) {
    switch (type.value()) {
      case LoadType::kF32Load:
        assm->emit_type_conversion(kExprF32ReinterpretI32, dst, tmp);
        break;
      case LoadType::kF64Load:
        assm->emit_type_conversion(kExprF64ReinterpretI64, dst, tmp);
        break;
      default:
        UNREACHABLE();
    }
  }
}

inline void ChangeEndiannessStore(LiftoffAssembler* assm, LiftoffRegister src,
                                  StoreType type, LiftoffRegList pinned) {
  bool is_float = false;
  LiftoffRegister tmp = src;
  switch (type.value()) {
    case StoreType::kI64Store8:
    case StoreType::kI32Store8:
      // No need to change endianness for byte size.
      return;
    case StoreType::kF32Store:
      is_float = true;
      tmp = assm->GetUnusedRegister(kGpReg, pinned);
      assm->emit_type_conversion(kExprI32ReinterpretF32, tmp, src);
      V8_FALLTHROUGH;
    case StoreType::kI32Store:
      assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 4);
      break;
    case StoreType::kI32Store16:
      assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 2);
      break;
    case StoreType::kF64Store:
      is_float = true;
      tmp = assm->GetUnusedRegister(kGpReg, pinned);
      assm->emit_type_conversion(kExprI64ReinterpretF64, tmp, src);
      V8_FALLTHROUGH;
    case StoreType::kI64Store:
      assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 8);
      break;
    case StoreType::kI64Store32:
      assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 4);
      break;
    case StoreType::kI64Store16:
      assm->TurboAssembler::ByteSwapSigned(tmp.gp(), tmp.gp(), 2);
      break;
    default:
      UNREACHABLE();
  }

  if (is_float) {
    switch (type.value()) {
      case StoreType::kF32Store:
        assm->emit_type_conversion(kExprF32ReinterpretI32, src, tmp);
        break;
      case StoreType::kF64Store:
        assm->emit_type_conversion(kExprF64ReinterpretI64, src, tmp);
        break;
      default:
        UNREACHABLE();
    }
  }
}
#endif  // V8_TARGET_BIG_ENDIAN

}  // namespace liftoff

int LiftoffAssembler::PrepareStackFrame() {
  int offset = pc_offset();
  // When the frame size is bigger than 4KB, we need two instructions for
  // stack checking, so we reserve space for this case.
  addi(sp, sp, 0);
  nop();
  nop();
  return offset;
}

void LiftoffAssembler::PrepareTailCall(int num_callee_stack_params,
                                       int stack_param_delta) {
  UseScratchRegisterScope temps(this);
  Register scratch = temps.Acquire();

  // Push the return address and frame pointer to complete the stack frame.
  Ld(scratch, MemOperand(fp, 8));
  Push(scratch);
  Ld(scratch, MemOperand(fp, 0));
  Push(scratch);

  // Shift the whole frame upwards.
  int slot_count = num_callee_stack_params + 2;
  for (int i = slot_count - 1; i >= 0; --i) {
    Ld(scratch, MemOperand(sp, i * 8));
    Sd(scratch, MemOperand(fp, (i - stack_param_delta) * 8));
  }

  // Set the new stack and frame pointer.
  Add64(sp, fp, -stack_param_delta * 8);
  Pop(ra, fp);
}

void LiftoffAssembler::AlignFrameSize() {}

void LiftoffAssembler::PatchPrepareStackFrame(
    int offset, SafepointTableBuilder* safepoint_table_builder) {
  // The frame_size includes the frame marker and the instance slot. Both are
  // pushed as part of frame construction, so we don't need to allocate memory
  // for them anymore.
  int frame_size = GetTotalFrameSize() - 2 * kSystemPointerSize;
  // We can't run out of space, just pass anything big enough to not cause the
  // assembler to try to grow the buffer.
  constexpr int kAvailableSpace = 256;
  TurboAssembler patching_assembler(
      nullptr, AssemblerOptions{}, CodeObjectRequired::kNo,
      ExternalAssemblerBuffer(buffer_start_ + offset, kAvailableSpace));

  if (V8_LIKELY(frame_size < 4 * KB)) {
    // This is the standard case for small frames: just subtract from SP and be
    // done with it.
    patching_assembler.Add64(sp, sp, Operand(-frame_size));
    return;
  }

  // The frame size is bigger than 4KB, so we might overflow the available stack
  // space if we first allocate the frame and then do the stack check (we will
  // need some remaining stack space for throwing the exception). That's why we
  // check the available stack space before we allocate the frame. To do this we
  // replace the {__ Daddu(sp, sp, -frame_size)} with a jump to OOL code that
  // does this "extended stack check".
  //
  // The OOL code can simply be generated here with the normal assembler,
  // because all other code generation, including OOL code, has already finished
  // when {PatchPrepareStackFrame} is called. The function prologue then jumps
  // to the current {pc_offset()} to execute the OOL code for allocating the
  // large frame.
  // Emit the unconditional branch in the function prologue (from {offset} to
  // {pc_offset()}).

  int imm32 = pc_offset() - offset;
  patching_assembler.GenPCRelativeJump(kScratchReg, imm32);

  // If the frame is bigger than the stack, we throw the stack overflow
  // exception unconditionally. Thereby we can avoid the integer overflow
  // check in the condition code.
  RecordComment("OOL: stack check for large frame");
  Label continuation;
  if (frame_size < FLAG_stack_size * 1024) {
    Register stack_limit = kScratchReg;
    Ld(stack_limit,
       FieldMemOperand(kWasmInstanceRegister,
                       WasmInstanceObject::kRealStackLimitAddressOffset));
    Ld(stack_limit, MemOperand(stack_limit));
    Add64(stack_limit, stack_limit, Operand(frame_size));
    Branch(&continuation, uge, sp, Operand(stack_limit));
  }

  Call(wasm::WasmCode::kWasmStackOverflow, RelocInfo::WASM_STUB_CALL);
  // The call will not return; just define an empty safepoint.
  safepoint_table_builder->DefineSafepoint(this);
  if (FLAG_debug_code) stop();

  bind(&continuation);

  // Now allocate the stack space. Note that this might do more than just
  // decrementing the SP;
  Add64(sp, sp, Operand(-frame_size));

  // Jump back to the start of the function, from {pc_offset()} to
  // right after the reserved space for the {__ Daddu(sp, sp, -framesize)}
  // (which is a Branch now).
  int func_start_offset = offset + 2 * kInstrSize;
  imm32 = func_start_offset - pc_offset();
  GenPCRelativeJump(kScratchReg, imm32);
}

void LiftoffAssembler::FinishCode() { ForceConstantPoolEmissionWithoutJump(); }

void LiftoffAssembler::AbortCompilation() { AbortedCodeGeneration(); }

// static
constexpr int LiftoffAssembler::StaticStackFrameSize() {
  return liftoff::kInstanceOffset;
}

int LiftoffAssembler::SlotSizeForType(ValueKind kind) {
  switch (kind) {
    case kS128:
      return element_size_bytes(kind);
    default:
      return kStackSlotSize;
  }
}

bool LiftoffAssembler::NeedsAlignment(ValueKind kind) {
  switch (kind) {
    case kS128:
      return true;
    default:
      // No alignment because all other types are kStackSlotSize.
      return false;
  }
}

void LiftoffAssembler::LoadConstant(LiftoffRegister reg, WasmValue value,
                                    RelocInfo::Mode rmode) {
  switch (value.type().kind()) {
    case kI32:
      TurboAssembler::li(reg.gp(), Operand(value.to_i32(), rmode));
      break;
    case kI64:
      TurboAssembler::li(reg.gp(), Operand(value.to_i64(), rmode));
      break;
    case kF32:
      TurboAssembler::LoadFPRImmediate(reg.fp(),
                                       value.to_f32_boxed().get_bits());
      break;
    case kF64:
      TurboAssembler::LoadFPRImmediate(reg.fp(),
                                       value.to_f64_boxed().get_bits());
      break;
    default:
      UNREACHABLE();
  }
}

void LiftoffAssembler::LoadInstanceFromFrame(Register dst) {
  Ld(dst, liftoff::GetInstanceOperand());
}

void LiftoffAssembler::LoadFromInstance(Register dst, Register instance,
                                        int offset, int size) {
  DCHECK_LE(0, offset);
  MemOperand src{instance, offset};
  switch (size) {
    case 1:
      Lb(dst, MemOperand(src));
      break;
    case 4:
      Lw(dst, MemOperand(src));
      break;
    case 8:
      Ld(dst, MemOperand(src));
      break;
    default:
      UNIMPLEMENTED();
  }
}

void LiftoffAssembler::LoadTaggedPointerFromInstance(Register dst,
                                                     Register instance,
                                                     int offset) {
  DCHECK_LE(0, offset);
  LoadTaggedPointerField(dst, MemOperand{instance, offset});
}

void LiftoffAssembler::SpillInstance(Register instance) {
  Sd(instance, liftoff::GetInstanceOperand());
}

void LiftoffAssembler::ResetOSRTarget() {}

void LiftoffAssembler::FillInstanceInto(Register dst) {
  Ld(dst, liftoff::GetInstanceOperand());
}

void LiftoffAssembler::LoadTaggedPointer(Register dst, Register src_addr,
                                         Register offset_reg,
                                         int32_t offset_imm,
                                         LiftoffRegList pinned) {
  MemOperand src_op = liftoff::GetMemOp(this, src_addr, offset_reg, offset_imm);
  LoadTaggedPointerField(dst, src_op);
}

void LiftoffAssembler::LoadFullPointer(Register dst, Register src_addr,
                                       int32_t offset_imm) {
  MemOperand src_op = liftoff::GetMemOp(this, src_addr, no_reg, offset_imm);
  Ld(dst, src_op);
}

void LiftoffAssembler::StoreTaggedPointer(Register dst_addr,
                                          Register offset_reg,
                                          int32_t offset_imm,
                                          LiftoffRegister src,
                                          LiftoffRegList pinned,
                                          SkipWriteBarrier skip_write_barrier) {
  Register scratch = pinned.set(GetUnusedRegister(kGpReg, pinned)).gp();
  MemOperand dst_op = liftoff::GetMemOp(this, dst_addr, offset_reg, offset_imm);
  StoreTaggedField(src.gp(), dst_op);

  if (skip_write_barrier || FLAG_disable_write_barriers) return;

  Label write_barrier;
  Label exit;
  CheckPageFlag(dst_addr, scratch,
                MemoryChunk::kPointersFromHereAreInterestingMask, ne,
                &write_barrier);
  Branch(&exit);
  bind(&write_barrier);
  JumpIfSmi(src.gp(), &exit);
  CheckPageFlag(src.gp(), scratch,
                MemoryChunk::kPointersToHereAreInterestingMask, eq, &exit);
  Add64(scratch, dst_op.rm(), dst_op.offset());
  CallRecordWriteStubSaveRegisters(
      dst_addr, scratch, RememberedSetAction::kEmit, SaveFPRegsMode::kSave,
      StubCallMode::kCallWasmRuntimeStub);
  bind(&exit);
}

void LiftoffAssembler::Load(LiftoffRegister dst, Register src_addr,
                            Register offset_reg, uintptr_t offset_imm,
                            LoadType type, LiftoffRegList pinned,
                            uint32_t* protected_load_pc, bool is_load_mem,
                            bool i64_offset) {
  MemOperand src_op = liftoff::GetMemOp(this, src_addr, offset_reg, offset_imm);

  if (protected_load_pc) *protected_load_pc = pc_offset();
  switch (type.value()) {
    case LoadType::kI32Load8U:
    case LoadType::kI64Load8U:
      Lbu(dst.gp(), src_op);
      break;
    case LoadType::kI32Load8S:
    case LoadType::kI64Load8S:
      Lb(dst.gp(), src_op);
      break;
    case LoadType::kI32Load16U:
    case LoadType::kI64Load16U:
      TurboAssembler::Ulhu(dst.gp(), src_op);
      break;
    case LoadType::kI32Load16S:
    case LoadType::kI64Load16S:
      TurboAssembler::Ulh(dst.gp(), src_op);
      break;
    case LoadType::kI64Load32U:
      TurboAssembler::Ulwu(dst.gp(), src_op);
      break;
    case LoadType::kI32Load:
    case LoadType::kI64Load32S:
      TurboAssembler::Ulw(dst.gp(), src_op);
      break;
    case LoadType::kI64Load:
      TurboAssembler::Uld(dst.gp(), src_op);
      break;
    case LoadType::kF32Load:
      TurboAssembler::ULoadFloat(dst.fp(), src_op);
      break;
    case LoadType::kF64Load:
      TurboAssembler::ULoadDouble(dst.fp(), src_op);
      break;
    default:
      UNREACHABLE();
  }

#if defined(V8_TARGET_BIG_ENDIAN)
  if (is_load_mem) {
    pinned.set(src_op.rm());
    liftoff::ChangeEndiannessLoad(this, dst, type, pinned);
  }
#endif
}

void LiftoffAssembler::Store(Register dst_addr, Register offset_reg,
                             uintptr_t offset_imm, LiftoffRegister src,
                             StoreType type, LiftoffRegList pinned,
                             uint32_t* protected_store_pc, bool is_store_mem) {
  MemOperand dst_op = liftoff::GetMemOp(this, dst_addr, offset_reg, offset_imm);

#if defined(V8_TARGET_BIG_ENDIAN)
  if (is_store_mem) {
    pinned.set(dst_op.rm());
    LiftoffRegister tmp = GetUnusedRegister(src.reg_class(), pinned);
    // Save original value.
    Move(tmp, src, type.value_type());

    src = tmp;
    pinned.set(tmp);
    liftoff::ChangeEndiannessStore(this, src, type, pinned);
  }
#endif

  if (protected_store_pc) *protected_store_pc = pc_offset();

  switch (type.value()) {
    case StoreType::kI32Store8:
    case StoreType::kI64Store8:
      Sb(src.gp(), dst_op);
      break;
    case StoreType::kI32Store16:
    case StoreType::kI64Store16:
      TurboAssembler::Ush(src.gp(), dst_op);
      break;
    case StoreType::kI32Store:
    case StoreType::kI64Store32:
      TurboAssembler::Usw(src.gp(), dst_op);
      break;
    case StoreType::kI64Store:
      TurboAssembler::Usd(src.gp(), dst_op);
      break;
    case StoreType::kF32Store:
      TurboAssembler::UStoreFloat(src.fp(), dst_op);
      break;
    case StoreType::kF64Store:
      TurboAssembler::UStoreDouble(src.fp(), dst_op);
      break;
    default:
      UNREACHABLE();
  }
}

namespace liftoff {
#define __ lasm->

inline Register CalculateActualAddress(LiftoffAssembler* lasm,
                                       Register addr_reg, Register offset_reg,
                                       uintptr_t offset_imm,
                                       Register result_reg) {
  DCHECK_NE(offset_reg, no_reg);
  DCHECK_NE(addr_reg, no_reg);
  __ Add64(result_reg, addr_reg, Operand(offset_reg));
  if (offset_imm != 0) {
    __ Add64(result_reg, result_reg, Operand(offset_imm));
  }
  return result_reg;
}

enum class Binop { kAdd, kSub, kAnd, kOr, kXor, kExchange };

inline void AtomicBinop(LiftoffAssembler* lasm, Register dst_addr,
                        Register offset_reg, uintptr_t offset_imm,
                        LiftoffRegister value, LiftoffRegister result,
                        StoreType type, Binop op) {
  LiftoffRegList pinned =
      LiftoffRegList::ForRegs(dst_addr, offset_reg, value, result);
  Register store_result = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();

  // Make sure that {result} is unique.
  Register result_reg = result.gp();
  if (result_reg == value.gp() || result_reg == dst_addr ||
      result_reg == offset_reg) {
    result_reg = __ GetUnusedRegister(kGpReg, pinned).gp();
  }

  UseScratchRegisterScope temps(lasm);
  Register actual_addr = liftoff::CalculateActualAddress(
      lasm, dst_addr, offset_reg, offset_imm, temps.Acquire());

  // Allocate an additional {temp} register to hold the result that should be
  // stored to memory. Note that {temp} and {store_result} are not allowed to be
  // the same register.
  Register temp = temps.Acquire();

  Label retry;
  __ bind(&retry);
  switch (type.value()) {
    case StoreType::kI64Store8:
    case StoreType::kI32Store8:
      __ lbu(result_reg, actual_addr, 0);
      __ sync();
      break;
    case StoreType::kI64Store16:
    case StoreType::kI32Store16:
      __ lhu(result_reg, actual_addr, 0);
      __ sync();
      break;
    case StoreType::kI64Store32:
    case StoreType::kI32Store:
      __ lr_w(true, false, result_reg, actual_addr);
      break;
    case StoreType::kI64Store:
      __ lr_d(true, false, result_reg, actual_addr);
      break;
    default:
      UNREACHABLE();
  }

  switch (op) {
    case Binop::kAdd:
      __ add(temp, result_reg, value.gp());
      break;
    case Binop::kSub:
      __ sub(temp, result_reg, value.gp());
      break;
    case Binop::kAnd:
      __ and_(temp, result_reg, value.gp());
      break;
    case Binop::kOr:
      __ or_(temp, result_reg, value.gp());
      break;
    case Binop::kXor:
      __ xor_(temp, result_reg, value.gp());
      break;
    case Binop::kExchange:
      __ mv(temp, value.gp());
      break;
  }
  switch (type.value()) {
    case StoreType::kI64Store8:
    case StoreType::kI32Store8:
      __ sync();
      __ sb(temp, actual_addr, 0);
      __ sync();
      __ mv(store_result, zero_reg);
      break;
    case StoreType::kI64Store16:
    case StoreType::kI32Store16:
      __ sync();
      __ sh(temp, actual_addr, 0);
      __ sync();
      __ mv(store_result, zero_reg);
      break;
    case StoreType::kI64Store32:
    case StoreType::kI32Store:
      __ sc_w(false, true, store_result, actual_addr, temp);
      break;
    case StoreType::kI64Store:
      __ sc_w(false, true, store_result, actual_addr, temp);
      break;
    default:
      UNREACHABLE();
  }

  __ bnez(store_result, &retry);
  if (result_reg != result.gp()) {
    __ mv(result.gp(), result_reg);
  }
}

#undef __
}  // namespace liftoff

void LiftoffAssembler::AtomicLoad(LiftoffRegister dst, Register src_addr,
                                  Register offset_reg, uintptr_t offset_imm,
                                  LoadType type, LiftoffRegList pinned) {
  UseScratchRegisterScope temps(this);
  Register src_reg = liftoff::CalculateActualAddress(
      this, src_addr, offset_reg, offset_imm, temps.Acquire());
  switch (type.value()) {
    case LoadType::kI32Load8U:
    case LoadType::kI64Load8U:
      lbu(dst.gp(), src_reg, 0);
      sync();
      return;
    case LoadType::kI32Load16U:
    case LoadType::kI64Load16U:
      lhu(dst.gp(), src_reg, 0);
      sync();
      return;
    case LoadType::kI32Load:
      lr_w(true, true, dst.gp(), src_reg);
      return;
    case LoadType::kI64Load32U:
      lr_w(true, true, dst.gp(), src_reg);
      slli(dst.gp(), dst.gp(), 32);
      srli(dst.gp(), dst.gp(), 32);
      return;
    case LoadType::kI64Load:
      lr_d(true, true, dst.gp(), src_reg);
      return;
    default:
      UNREACHABLE();
  }
}

void LiftoffAssembler::AtomicStore(Register dst_addr, Register offset_reg,
                                   uintptr_t offset_imm, LiftoffRegister src,
                                   StoreType type, LiftoffRegList pinned) {
  UseScratchRegisterScope temps(this);
  Register dst_reg = liftoff::CalculateActualAddress(
      this, dst_addr, offset_reg, offset_imm, temps.Acquire());
  switch (type.value()) {
    case StoreType::kI64Store8:
    case StoreType::kI32Store8:
      sync();
      sb(src.gp(), dst_reg, 0);
      sync();
      return;
    case StoreType::kI64Store16:
    case StoreType::kI32Store16:
      sync();
      sh(src.gp(), dst_reg, 0);
      sync();
      return;
    case StoreType::kI64Store32:
    case StoreType::kI32Store:
      sc_w(true, true, zero_reg, dst_reg, src.gp());
      return;
    case StoreType::kI64Store:
      sc_d(true, true, zero_reg, dst_reg, src.gp());
      return;
    default:
      UNREACHABLE();
  }
}

void LiftoffAssembler::AtomicAdd(Register dst_addr, Register offset_reg,
                                 uintptr_t offset_imm, LiftoffRegister value,
                                 LiftoffRegister result, StoreType type) {
  liftoff::AtomicBinop(this, dst_addr, offset_reg, offset_imm, value, result,
                       type, liftoff::Binop::kAdd);
}

void LiftoffAssembler::AtomicSub(Register dst_addr, Register offset_reg,
                                 uintptr_t offset_imm, LiftoffRegister value,
                                 LiftoffRegister result, StoreType type) {
  liftoff::AtomicBinop(this, dst_addr, offset_reg, offset_imm, value, result,
                       type, liftoff::Binop::kSub);
}

void LiftoffAssembler::AtomicAnd(Register dst_addr, Register offset_reg,
                                 uintptr_t offset_imm, LiftoffRegister value,
                                 LiftoffRegister result, StoreType type) {
  liftoff::AtomicBinop(this, dst_addr, offset_reg, offset_imm, value, result,
                       type, liftoff::Binop::kAnd);
}

void LiftoffAssembler::AtomicOr(Register dst_addr, Register offset_reg,
                                uintptr_t offset_imm, LiftoffRegister value,
                                LiftoffRegister result, StoreType type) {
  liftoff::AtomicBinop(this, dst_addr, offset_reg, offset_imm, value, result,
                       type, liftoff::Binop::kOr);
}

void LiftoffAssembler::AtomicXor(Register dst_addr, Register offset_reg,
                                 uintptr_t offset_imm, LiftoffRegister value,
                                 LiftoffRegister result, StoreType type) {
  liftoff::AtomicBinop(this, dst_addr, offset_reg, offset_imm, value, result,
                       type, liftoff::Binop::kXor);
}

void LiftoffAssembler::AtomicExchange(Register dst_addr, Register offset_reg,
                                      uintptr_t offset_imm,
                                      LiftoffRegister value,
                                      LiftoffRegister result, StoreType type) {
  liftoff::AtomicBinop(this, dst_addr, offset_reg, offset_imm, value, result,
                       type, liftoff::Binop::kExchange);
}

void LiftoffAssembler::AtomicCompareExchange(
    Register dst_addr, Register offset_reg, uintptr_t offset_imm,
    LiftoffRegister expected, LiftoffRegister new_value, LiftoffRegister result,
    StoreType type) {
  LiftoffRegList pinned =
      LiftoffRegList::ForRegs(dst_addr, offset_reg, expected, new_value);

  Register result_reg = result.gp();
  if (pinned.has(result)) {
    result_reg = GetUnusedRegister(kGpReg, pinned).gp();
  }

  UseScratchRegisterScope temps(this);

  Register actual_addr = liftoff::CalculateActualAddress(
      this, dst_addr, offset_reg, offset_imm, temps.Acquire());

  Register store_result = temps.Acquire();

  Label retry;
  Label done;
  bind(&retry);
  switch (type.value()) {
    case StoreType::kI64Store8:
    case StoreType::kI32Store8:
      lbu(result_reg, actual_addr, 0);
      sync();
      Branch(&done, ne, result.gp(), Operand(expected.gp()));
      sync();
      sb(new_value.gp(), actual_addr, 0);
      sync();
      mv(store_result, zero_reg);
      break;
    case StoreType::kI64Store16:
    case StoreType::kI32Store16:
      lhu(result_reg, actual_addr, 0);
      sync();
      Branch(&done, ne, result.gp(), Operand(expected.gp()));
      sync();
      sh(new_value.gp(), actual_addr, 0);
      sync();
      mv(store_result, zero_reg);
      break;
    case StoreType::kI64Store32:
    case StoreType::kI32Store:
      lr_w(true, true, result_reg, actual_addr);
      Branch(&done, ne, result.gp(), Operand(expected.gp()));
      sc_w(true, true, store_result, new_value.gp(), actual_addr);
      break;
    case StoreType::kI64Store:
      lr_d(true, true, result_reg, actual_addr);
      Branch(&done, ne, result.gp(), Operand(expected.gp()));
      sc_d(true, true, store_result, new_value.gp(), actual_addr);
      break;
    default:
      UNREACHABLE();
  }
  bnez(store_result, &retry);
  bind(&done);

  if (result_reg != result.gp()) {
    mv(result.gp(), result_reg);
  }
}

void LiftoffAssembler::AtomicFence() { sync(); }

void LiftoffAssembler::LoadCallerFrameSlot(LiftoffRegister dst,
                                           uint32_t caller_slot_idx,
                                           ValueKind kind) {
  MemOperand src(fp, kSystemPointerSize * (caller_slot_idx + 1));
  liftoff::Load(this, dst, src, kind);
}

void LiftoffAssembler::StoreCallerFrameSlot(LiftoffRegister src,
                                            uint32_t caller_slot_idx,
                                            ValueKind kind) {
  int32_t offset = kSystemPointerSize * (caller_slot_idx + 1);
  liftoff::Store(this, fp, offset, src, kind);
}

void LiftoffAssembler::LoadReturnStackSlot(LiftoffRegister dst, int offset,
                                           ValueKind kind) {
  liftoff::Load(this, dst, MemOperand(sp, offset), kind);
}

void LiftoffAssembler::MoveStackValue(uint32_t dst_offset, uint32_t src_offset,
                                      ValueKind kind) {
  DCHECK_NE(dst_offset, src_offset);
  LiftoffRegister reg = GetUnusedRegister(reg_class_for(kind), {});
  Fill(reg, src_offset, kind);
  Spill(dst_offset, reg, kind);
}

void LiftoffAssembler::Move(Register dst, Register src, ValueKind kind) {
  DCHECK_NE(dst, src);
  // TODO(ksreten): Handle different sizes here.
  TurboAssembler::Move(dst, src);
}

void LiftoffAssembler::Move(DoubleRegister dst, DoubleRegister src,
                            ValueKind kind) {
  DCHECK_NE(dst, src);
  TurboAssembler::Move(dst, src);
}

void LiftoffAssembler::Spill(int offset, LiftoffRegister reg, ValueKind kind) {
  RecordUsedSpillOffset(offset);
  MemOperand dst = liftoff::GetStackSlot(offset);
  switch (kind) {
    case kI32:
      Sw(reg.gp(), dst);
      break;
    case kI64:
    case kRef:
    case kOptRef:
    case kRtt:
    case kRttWithDepth:
      Sd(reg.gp(), dst);
      break;
    case kF32:
      StoreFloat(reg.fp(), dst);
      break;
    case kF64:
      TurboAssembler::StoreDouble(reg.fp(), dst);
      break;
    case kS128:
      bailout(kSimd, "Spill S128");
      break;
    default:
      UNREACHABLE();
  }
}

void LiftoffAssembler::Spill(int offset, WasmValue value) {
  RecordUsedSpillOffset(offset);
  MemOperand dst = liftoff::GetStackSlot(offset);
  switch (value.type().kind()) {
    case kI32: {
      LiftoffRegister tmp = GetUnusedRegister(kGpReg, {});
      TurboAssembler::li(tmp.gp(), Operand(value.to_i32()));
      Sw(tmp.gp(), dst);
      break;
    }
    case kI64:
    case kRef:
    case kOptRef: {
      LiftoffRegister tmp = GetUnusedRegister(kGpReg, {});
      TurboAssembler::li(tmp.gp(), value.to_i64());
      Sd(tmp.gp(), dst);
      break;
    }
    default:
      // kWasmF32 and kWasmF64 are unreachable, since those
      // constants are not tracked.
      UNREACHABLE();
  }
}

void LiftoffAssembler::Fill(LiftoffRegister reg, int offset, ValueKind kind) {
  MemOperand src = liftoff::GetStackSlot(offset);
  switch (kind) {
    case kI32:
      Lw(reg.gp(), src);
      break;
    case kI64:
    case kRef:
    case kOptRef:
      Ld(reg.gp(), src);
      break;
    case kF32:
      LoadFloat(reg.fp(), src);
      break;
    case kF64:
      TurboAssembler::LoadDouble(reg.fp(), src);
      break;
    default:
      UNREACHABLE();
  }
}

void LiftoffAssembler::FillI64Half(Register, int offset, RegPairHalf) {
  UNREACHABLE();
}

void LiftoffAssembler::FillStackSlotsWithZero(int start, int size) {
  DCHECK_LT(0, size);
  RecordUsedSpillOffset(start + size);

  if (size <= 12 * kStackSlotSize) {
    // Special straight-line code for up to 12 slots. Generates one
    // instruction per slot (<= 12 instructions total).
    uint32_t remainder = size;
    for (; remainder >= kStackSlotSize; remainder -= kStackSlotSize) {
      Sd(zero_reg, liftoff::GetStackSlot(start + remainder));
    }
    DCHECK(remainder == 4 || remainder == 0);
    if (remainder) {
      Sw(zero_reg, liftoff::GetStackSlot(start + remainder));
    }
  } else {
    // General case for bigger counts (12 instructions).
    // Use a0 for start address (inclusive), a1 for end address (exclusive).
    Push(a1, a0);
    Add64(a0, fp, Operand(-start - size));
    Add64(a1, fp, Operand(-start));

    Label loop;
    bind(&loop);
    Sd(zero_reg, MemOperand(a0));
    addi(a0, a0, kSystemPointerSize);
    BranchShort(&loop, ne, a0, Operand(a1));

    Pop(a1, a0);
  }
}

void LiftoffAssembler::emit_i64_clz(LiftoffRegister dst, LiftoffRegister src) {
  TurboAssembler::Clz64(dst.gp(), src.gp());
}

void LiftoffAssembler::emit_i64_ctz(LiftoffRegister dst, LiftoffRegister src) {
  TurboAssembler::Ctz64(dst.gp(), src.gp());
}

bool LiftoffAssembler::emit_i64_popcnt(LiftoffRegister dst,
                                       LiftoffRegister src) {
  TurboAssembler::Popcnt64(dst.gp(), src.gp());
  return true;
}

void LiftoffAssembler::emit_i32_mul(Register dst, Register lhs, Register rhs) {
  TurboAssembler::Mul32(dst, lhs, rhs);
}

void LiftoffAssembler::emit_i32_divs(Register dst, Register lhs, Register rhs,
                                     Label* trap_div_by_zero,
                                     Label* trap_div_unrepresentable) {
  TurboAssembler::Branch(trap_div_by_zero, eq, rhs, Operand(zero_reg));

  // Check if lhs == kMinInt and rhs == -1, since this case is unrepresentable.
  TurboAssembler::CompareI(kScratchReg, lhs, Operand(kMinInt), ne);
  TurboAssembler::CompareI(kScratchReg2, rhs, Operand(-1), ne);
  add(kScratchReg, kScratchReg, kScratchReg2);
  TurboAssembler::Branch(trap_div_unrepresentable, eq, kScratchReg,
                         Operand(zero_reg));

  TurboAssembler::Div32(dst, lhs, rhs);
}

void LiftoffAssembler::emit_i32_divu(Register dst, Register lhs, Register rhs,
                                     Label* trap_div_by_zero) {
  TurboAssembler::Branch(trap_div_by_zero, eq, rhs, Operand(zero_reg));
  TurboAssembler::Divu32(dst, lhs, rhs);
}

void LiftoffAssembler::emit_i32_rems(Register dst, Register lhs, Register rhs,
                                     Label* trap_div_by_zero) {
  TurboAssembler::Branch(trap_div_by_zero, eq, rhs, Operand(zero_reg));
  TurboAssembler::Mod32(dst, lhs, rhs);
}

void LiftoffAssembler::emit_i32_remu(Register dst, Register lhs, Register rhs,
                                     Label* trap_div_by_zero) {
  TurboAssembler::Branch(trap_div_by_zero, eq, rhs, Operand(zero_reg));
  TurboAssembler::Modu32(dst, lhs, rhs);
}

#define I32_BINOP(name, instruction)                                 \
  void LiftoffAssembler::emit_i32_##name(Register dst, Register lhs, \
                                         Register rhs) {             \
    instruction(dst, lhs, rhs);                                      \
  }

// clang-format off
I32_BINOP(add, addw)
I32_BINOP(sub, subw)
I32_BINOP(and, and_)
I32_BINOP(or, or_)
I32_BINOP(xor, xor_)
// clang-format on

#undef I32_BINOP

#define I32_BINOP_I(name, instruction)                                  \
  void LiftoffAssembler::emit_i32_##name##i(Register dst, Register lhs, \
                                            int32_t imm) {              \
    instruction(dst, lhs, Operand(imm));                                \
  }

// clang-format off
I32_BINOP_I(add, Add32)
I32_BINOP_I(sub, Sub32)
I32_BINOP_I(and, And)
I32_BINOP_I(or, Or)
I32_BINOP_I(xor, Xor)
// clang-format on

#undef I32_BINOP_I

void LiftoffAssembler::emit_i32_clz(Register dst, Register src) {
  TurboAssembler::Clz32(dst, src);
}

void LiftoffAssembler::emit_i32_ctz(Register dst, Register src) {
  TurboAssembler::Ctz32(dst, src);
}

bool LiftoffAssembler::emit_i32_popcnt(Register dst, Register src) {
  TurboAssembler::Popcnt32(dst, src);
  return true;
}

#define I32_SHIFTOP(name, instruction)                               \
  void LiftoffAssembler::emit_i32_##name(Register dst, Register src, \
                                         Register amount) {          \
    instruction(dst, src, amount);                                   \
  }
#define I32_SHIFTOP_I(name, instruction)                                \
  void LiftoffAssembler::emit_i32_##name##i(Register dst, Register src, \
                                            int amount) {               \
    instruction(dst, src, amount & 31);                                 \
  }

I32_SHIFTOP(shl, sllw)
I32_SHIFTOP(sar, sraw)
I32_SHIFTOP(shr, srlw)

I32_SHIFTOP_I(shl, slliw)
I32_SHIFTOP_I(sar, sraiw)
I32_SHIFTOP_I(shr, srliw)

#undef I32_SHIFTOP
#undef I32_SHIFTOP_I

void LiftoffAssembler::emit_i64_mul(LiftoffRegister dst, LiftoffRegister lhs,
                                    LiftoffRegister rhs) {
  TurboAssembler::Mul64(dst.gp(), lhs.gp(), rhs.gp());
}

bool LiftoffAssembler::emit_i64_divs(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs,
                                     Label* trap_div_by_zero,
                                     Label* trap_div_unrepresentable) {
  TurboAssembler::Branch(trap_div_by_zero, eq, rhs.gp(), Operand(zero_reg));

  // Check if lhs == MinInt64 and rhs == -1, since this case is unrepresentable.
  TurboAssembler::CompareI(kScratchReg, lhs.gp(),
                           Operand(std::numeric_limits<int64_t>::min()), ne);
  TurboAssembler::CompareI(kScratchReg2, rhs.gp(), Operand(-1), ne);
  add(kScratchReg, kScratchReg, kScratchReg2);
  TurboAssembler::Branch(trap_div_unrepresentable, eq, kScratchReg,
                         Operand(zero_reg));

  TurboAssembler::Div64(dst.gp(), lhs.gp(), rhs.gp());
  return true;
}

bool LiftoffAssembler::emit_i64_divu(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs,
                                     Label* trap_div_by_zero) {
  TurboAssembler::Branch(trap_div_by_zero, eq, rhs.gp(), Operand(zero_reg));
  TurboAssembler::Divu64(dst.gp(), lhs.gp(), rhs.gp());
  return true;
}

bool LiftoffAssembler::emit_i64_rems(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs,
                                     Label* trap_div_by_zero) {
  TurboAssembler::Branch(trap_div_by_zero, eq, rhs.gp(), Operand(zero_reg));
  TurboAssembler::Mod64(dst.gp(), lhs.gp(), rhs.gp());
  return true;
}

bool LiftoffAssembler::emit_i64_remu(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs,
                                     Label* trap_div_by_zero) {
  TurboAssembler::Branch(trap_div_by_zero, eq, rhs.gp(), Operand(zero_reg));
  TurboAssembler::Modu64(dst.gp(), lhs.gp(), rhs.gp());
  return true;
}

#define I64_BINOP(name, instruction)                                   \
  void LiftoffAssembler::emit_i64_##name(                              \
      LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
    instruction(dst.gp(), lhs.gp(), rhs.gp());                         \
  }

// clang-format off
I64_BINOP(add, add)
I64_BINOP(sub, sub)
I64_BINOP(and, and_)
I64_BINOP(or, or_)
I64_BINOP(xor, xor_)
// clang-format on

#undef I64_BINOP

#define I64_BINOP_I(name, instruction)                         \
  void LiftoffAssembler::emit_i64_##name##i(                   \
      LiftoffRegister dst, LiftoffRegister lhs, int32_t imm) { \
    instruction(dst.gp(), lhs.gp(), Operand(imm));             \
  }

// clang-format off
I64_BINOP_I(and, And)
I64_BINOP_I(or, Or)
I64_BINOP_I(xor, Xor)
// clang-format on

#undef I64_BINOP_I

#define I64_SHIFTOP(name, instruction)                             \
  void LiftoffAssembler::emit_i64_##name(                          \
      LiftoffRegister dst, LiftoffRegister src, Register amount) { \
    instruction(dst.gp(), src.gp(), amount);                       \
  }
#define I64_SHIFTOP_I(name, instruction)                                       \
  void LiftoffAssembler::emit_i64_##name##i(LiftoffRegister dst,               \
                                            LiftoffRegister src, int amount) { \
    DCHECK(is_uint6(amount));                                                  \
    instruction(dst.gp(), src.gp(), amount);                                   \
  }

I64_SHIFTOP(shl, sll)
I64_SHIFTOP(sar, sra)
I64_SHIFTOP(shr, srl)

I64_SHIFTOP_I(shl, slli)
I64_SHIFTOP_I(sar, srai)
I64_SHIFTOP_I(shr, srli)

#undef I64_SHIFTOP
#undef I64_SHIFTOP_I

void LiftoffAssembler::emit_i64_addi(LiftoffRegister dst, LiftoffRegister lhs,
                                     int64_t imm) {
  TurboAssembler::Add64(dst.gp(), lhs.gp(), Operand(imm));
}
void LiftoffAssembler::emit_u32_to_intptr(Register dst, Register src) {
  addw(dst, src, zero_reg);
}

void LiftoffAssembler::emit_f32_neg(DoubleRegister dst, DoubleRegister src) {
  TurboAssembler::Neg_s(dst, src);
}

void LiftoffAssembler::emit_f64_neg(DoubleRegister dst, DoubleRegister src) {
  TurboAssembler::Neg_d(dst, src);
}

void LiftoffAssembler::emit_f32_min(DoubleRegister dst, DoubleRegister lhs,
                                    DoubleRegister rhs) {
  TurboAssembler::Float32Min(dst, lhs, rhs);
}

void LiftoffAssembler::emit_f32_max(DoubleRegister dst, DoubleRegister lhs,
                                    DoubleRegister rhs) {
  TurboAssembler::Float32Max(dst, lhs, rhs);
}

void LiftoffAssembler::emit_f32_copysign(DoubleRegister dst, DoubleRegister lhs,
                                         DoubleRegister rhs) {
  fsgnj_s(dst, lhs, rhs);
}

void LiftoffAssembler::emit_f64_min(DoubleRegister dst, DoubleRegister lhs,
                                    DoubleRegister rhs) {
  TurboAssembler::Float64Min(dst, lhs, rhs);
}

void LiftoffAssembler::emit_f64_max(DoubleRegister dst, DoubleRegister lhs,
                                    DoubleRegister rhs) {
  TurboAssembler::Float64Max(dst, lhs, rhs);
}

void LiftoffAssembler::emit_f64_copysign(DoubleRegister dst, DoubleRegister lhs,
                                         DoubleRegister rhs) {
  fsgnj_d(dst, lhs, rhs);
}

#define FP_BINOP(name, instruction)                                          \
  void LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister lhs, \
                                     DoubleRegister rhs) {                   \
    instruction(dst, lhs, rhs);                                              \
  }
#define FP_UNOP(name, instruction)                                             \
  void LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister src) { \
    instruction(dst, src);                                                     \
  }
#define FP_UNOP_RETURN_TRUE(name, instruction)                                 \
  bool LiftoffAssembler::emit_##name(DoubleRegister dst, DoubleRegister src) { \
    instruction(dst, src, kScratchDoubleReg);                                  \
    return true;                                                               \
  }

FP_BINOP(f32_add, fadd_s)
FP_BINOP(f32_sub, fsub_s)
FP_BINOP(f32_mul, fmul_s)
FP_BINOP(f32_div, fdiv_s)
FP_UNOP(f32_abs, fabs_s)
FP_UNOP_RETURN_TRUE(f32_ceil, Ceil_s_s)
FP_UNOP_RETURN_TRUE(f32_floor, Floor_s_s)
FP_UNOP_RETURN_TRUE(f32_trunc, Trunc_s_s)
FP_UNOP_RETURN_TRUE(f32_nearest_int, Round_s_s)
FP_UNOP(f32_sqrt, fsqrt_s)
FP_BINOP(f64_add, fadd_d)
FP_BINOP(f64_sub, fsub_d)
FP_BINOP(f64_mul, fmul_d)
FP_BINOP(f64_div, fdiv_d)
FP_UNOP(f64_abs, fabs_d)
FP_UNOP_RETURN_TRUE(f64_ceil, Ceil_d_d)
FP_UNOP_RETURN_TRUE(f64_floor, Floor_d_d)
FP_UNOP_RETURN_TRUE(f64_trunc, Trunc_d_d)
FP_UNOP_RETURN_TRUE(f64_nearest_int, Round_d_d)
FP_UNOP(f64_sqrt, fsqrt_d)

#undef FP_BINOP
#undef FP_UNOP
#undef FP_UNOP_RETURN_TRUE

bool LiftoffAssembler::emit_type_conversion(WasmOpcode opcode,
                                            LiftoffRegister dst,
                                            LiftoffRegister src, Label* trap) {
  switch (opcode) {
    case kExprI32ConvertI64:
      // According to WebAssembly spec, if I64 value does not fit the range of
      // I32, the value is undefined. Therefore, We use sign extension to
      // implement I64 to I32 truncation
      TurboAssembler::SignExtendWord(dst.gp(), src.gp());
      return true;
    case kExprI32SConvertF32:
    case kExprI32UConvertF32:
    case kExprI32SConvertF64:
    case kExprI32UConvertF64:
    case kExprI64SConvertF32:
    case kExprI64UConvertF32:
    case kExprI64SConvertF64:
    case kExprI64UConvertF64:
    case kExprF32ConvertF64: {
      // real conversion, if src is out-of-bound of target integer types,
      // kScratchReg is set to 0
      switch (opcode) {
        case kExprI32SConvertF32:
          Trunc_w_s(dst.gp(), src.fp(), kScratchReg);
          break;
        case kExprI32UConvertF32:
          Trunc_uw_s(dst.gp(), src.fp(), kScratchReg);
          break;
        case kExprI32SConvertF64:
          Trunc_w_d(dst.gp(), src.fp(), kScratchReg);
          break;
        case kExprI32UConvertF64:
          Trunc_uw_d(dst.gp(), src.fp(), kScratchReg);
          break;
        case kExprI64SConvertF32:
          Trunc_l_s(dst.gp(), src.fp(), kScratchReg);
          break;
        case kExprI64UConvertF32:
          Trunc_ul_s(dst.gp(), src.fp(), kScratchReg);
          break;
        case kExprI64SConvertF64:
          Trunc_l_d(dst.gp(), src.fp(), kScratchReg);
          break;
        case kExprI64UConvertF64:
          Trunc_ul_d(dst.gp(), src.fp(), kScratchReg);
          break;
        case kExprF32ConvertF64:
          fcvt_s_d(dst.fp(), src.fp());
          break;
        default:
          UNREACHABLE();
      }

      // Checking if trap.
      if (trap != nullptr) {
        TurboAssembler::Branch(trap, eq, kScratchReg, Operand(zero_reg));
      }

      return true;
    }
    case kExprI32ReinterpretF32:
      TurboAssembler::ExtractLowWordFromF64(dst.gp(), src.fp());
      return true;
    case kExprI64SConvertI32:
      TurboAssembler::SignExtendWord(dst.gp(), src.gp());
      return true;
    case kExprI64UConvertI32:
      TurboAssembler::ZeroExtendWord(dst.gp(), src.gp());
      return true;
    case kExprI64ReinterpretF64:
      fmv_x_d(dst.gp(), src.fp());
      return true;
    case kExprF32SConvertI32: {
      TurboAssembler::Cvt_s_w(dst.fp(), src.gp());
      return true;
    }
    case kExprF32UConvertI32:
      TurboAssembler::Cvt_s_uw(dst.fp(), src.gp());
      return true;
    case kExprF32ReinterpretI32:
      fmv_w_x(dst.fp(), src.gp());
      return true;
    case kExprF64SConvertI32: {
      TurboAssembler::Cvt_d_w(dst.fp(), src.gp());
      return true;
    }
    case kExprF64UConvertI32:
      TurboAssembler::Cvt_d_uw(dst.fp(), src.gp());
      return true;
    case kExprF64ConvertF32:
      fcvt_d_s(dst.fp(), src.fp());
      return true;
    case kExprF64ReinterpretI64:
      fmv_d_x(dst.fp(), src.gp());
      return true;
    case kExprI32SConvertSatF32: {
      fcvt_w_s(dst.gp(), src.fp(), RTZ);
      Clear_if_nan_s(dst.gp(), src.fp());
      return true;
    }
    case kExprI32UConvertSatF32: {
      fcvt_wu_s(dst.gp(), src.fp(), RTZ);
      Clear_if_nan_s(dst.gp(), src.fp());
      return true;
    }
    case kExprI32SConvertSatF64: {
      fcvt_w_d(dst.gp(), src.fp(), RTZ);
      Clear_if_nan_d(dst.gp(), src.fp());
      return true;
    }
    case kExprI32UConvertSatF64: {
      fcvt_wu_d(dst.gp(), src.fp(), RTZ);
      Clear_if_nan_d(dst.gp(), src.fp());
      return true;
    }
    case kExprI64SConvertSatF32: {
      fcvt_l_s(dst.gp(), src.fp(), RTZ);
      Clear_if_nan_s(dst.gp(), src.fp());
      return true;
    }
    case kExprI64UConvertSatF32: {
      fcvt_lu_s(dst.gp(), src.fp(), RTZ);
      Clear_if_nan_s(dst.gp(), src.fp());
      return true;
    }
    case kExprI64SConvertSatF64: {
      fcvt_l_d(dst.gp(), src.fp(), RTZ);
      Clear_if_nan_d(dst.gp(), src.fp());
      return true;
    }
    case kExprI64UConvertSatF64: {
      fcvt_lu_d(dst.gp(), src.fp(), RTZ);
      Clear_if_nan_d(dst.gp(), src.fp());
      return true;
    }
    default:
      return false;
  }
}

void LiftoffAssembler::emit_i32_signextend_i8(Register dst, Register src) {
  slliw(dst, src, 32 - 8);
  sraiw(dst, dst, 32 - 8);
}

void LiftoffAssembler::emit_i32_signextend_i16(Register dst, Register src) {
  slliw(dst, src, 32 - 16);
  sraiw(dst, dst, 32 - 16);
}

void LiftoffAssembler::emit_i64_signextend_i8(LiftoffRegister dst,
                                              LiftoffRegister src) {
  slli(dst.gp(), src.gp(), 64 - 8);
  srai(dst.gp(), dst.gp(), 64 - 8);
}

void LiftoffAssembler::emit_i64_signextend_i16(LiftoffRegister dst,
                                               LiftoffRegister src) {
  slli(dst.gp(), src.gp(), 64 - 16);
  srai(dst.gp(), dst.gp(), 64 - 16);
}

void LiftoffAssembler::emit_i64_signextend_i32(LiftoffRegister dst,
                                               LiftoffRegister src) {
  slli(dst.gp(), src.gp(), 64 - 32);
  srai(dst.gp(), dst.gp(), 64 - 32);
}

void LiftoffAssembler::emit_jump(Label* label) {
  TurboAssembler::Branch(label);
}

void LiftoffAssembler::emit_jump(Register target) {
  TurboAssembler::Jump(target);
}

void LiftoffAssembler::emit_cond_jump(LiftoffCondition liftoff_cond,
                                      Label* label, ValueKind kind,
                                      Register lhs, Register rhs) {
  Condition cond = liftoff::ToCondition(liftoff_cond);
  if (rhs == no_reg) {
    DCHECK(kind == kI32 || kind == kI64);
    TurboAssembler::Branch(label, cond, lhs, Operand(zero_reg));
  } else {
    DCHECK((kind == kI32 || kind == kI64) ||
           (is_reference(kind) &&
            (liftoff_cond == kEqual || liftoff_cond == kUnequal)));
    TurboAssembler::Branch(label, cond, lhs, Operand(rhs));
  }
}

void LiftoffAssembler::emit_i32_cond_jumpi(LiftoffCondition liftoff_cond,
                                           Label* label, Register lhs,
                                           int32_t imm) {
  Condition cond = liftoff::ToCondition(liftoff_cond);
  TurboAssembler::Branch(label, cond, lhs, Operand(imm));
}

void LiftoffAssembler::emit_i32_eqz(Register dst, Register src) {
  TurboAssembler::Sltu(dst, src, 1);
}

void LiftoffAssembler::emit_i32_set_cond(LiftoffCondition liftoff_cond,
                                         Register dst, Register lhs,
                                         Register rhs) {
  Condition cond = liftoff::ToCondition(liftoff_cond);
  TurboAssembler::CompareI(dst, lhs, Operand(rhs), cond);
}

void LiftoffAssembler::emit_i64_eqz(Register dst, LiftoffRegister src) {
  TurboAssembler::Sltu(dst, src.gp(), 1);
}

void LiftoffAssembler::emit_i64_set_cond(LiftoffCondition liftoff_cond,
                                         Register dst, LiftoffRegister lhs,
                                         LiftoffRegister rhs) {
  Condition cond = liftoff::ToCondition(liftoff_cond);
  TurboAssembler::CompareI(dst, lhs.gp(), Operand(rhs.gp()), cond);
}

static FPUCondition ConditionToConditionCmpFPU(LiftoffCondition condition) {
  switch (condition) {
    case kEqual:
      return EQ;
    case kUnequal:
      return NE;
    case kUnsignedLessThan:
      return LT;
    case kUnsignedGreaterEqual:
      return GE;
    case kUnsignedLessEqual:
      return LE;
    case kUnsignedGreaterThan:
      return GT;
    default:
      break;
  }
  UNREACHABLE();
}

void LiftoffAssembler::emit_f32_set_cond(LiftoffCondition liftoff_cond,
                                         Register dst, DoubleRegister lhs,
                                         DoubleRegister rhs) {
  FPUCondition fcond = ConditionToConditionCmpFPU(liftoff_cond);
  TurboAssembler::CompareF32(dst, fcond, lhs, rhs);
}

void LiftoffAssembler::emit_f64_set_cond(LiftoffCondition liftoff_cond,
                                         Register dst, DoubleRegister lhs,
                                         DoubleRegister rhs) {
  FPUCondition fcond = ConditionToConditionCmpFPU(liftoff_cond);
  TurboAssembler::CompareF64(dst, fcond, lhs, rhs);
}

bool LiftoffAssembler::emit_select(LiftoffRegister dst, Register condition,
                                   LiftoffRegister true_value,
                                   LiftoffRegister false_value,
                                   ValueKind kind) {
  return false;
}

void LiftoffAssembler::emit_smi_check(Register obj, Label* target,
                                      SmiCheckMode mode) {
  UseScratchRegisterScope temps(this);
  Register scratch = temps.Acquire();
  And(scratch, obj, Operand(kSmiTagMask));
  Condition condition = mode == kJumpOnSmi ? eq : ne;
  Branch(target, condition, scratch, Operand(zero_reg));
}

void LiftoffAssembler::LoadTransform(LiftoffRegister dst, Register src_addr,
                                     Register offset_reg, uintptr_t offset_imm,
                                     LoadType type,
                                     LoadTransformationKind transform,
                                     uint32_t* protected_load_pc) {
  bailout(kSimd, "load extend and load splat unimplemented");
}

void LiftoffAssembler::LoadLane(LiftoffRegister dst, LiftoffRegister src,
                                Register addr, Register offset_reg,
                                uintptr_t offset_imm, LoadType type,
                                uint8_t laneidx, uint32_t* protected_load_pc) {
  bailout(kSimd, "loadlane");
}

void LiftoffAssembler::StoreLane(Register dst, Register offset,
                                 uintptr_t offset_imm, LiftoffRegister src,
                                 StoreType type, uint8_t lane,
                                 uint32_t* protected_store_pc) {
  bailout(kSimd, "StoreLane");
}

void LiftoffAssembler::emit_i8x16_shuffle(LiftoffRegister dst,
                                          LiftoffRegister lhs,
                                          LiftoffRegister rhs,
                                          const uint8_t shuffle[16],
                                          bool is_swizzle) {
  bailout(kSimd, "emit_i8x16_shuffle");
}

void LiftoffAssembler::emit_i8x16_popcnt(LiftoffRegister dst,
                                         LiftoffRegister src) {
  bailout(kSimd, "emit_i8x16_popcnt");
}

void LiftoffAssembler::emit_i8x16_swizzle(LiftoffRegister dst,
                                          LiftoffRegister lhs,
                                          LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_swizzle");
}

void LiftoffAssembler::emit_i8x16_splat(LiftoffRegister dst,
                                        LiftoffRegister src) {
  bailout(kSimd, "emit_i8x16_splat");
}

void LiftoffAssembler::emit_i16x8_splat(LiftoffRegister dst,
                                        LiftoffRegister src) {
  bailout(kSimd, "emit_i16x8_splat");
}

void LiftoffAssembler::emit_i32x4_splat(LiftoffRegister dst,
                                        LiftoffRegister src) {
  bailout(kSimd, "emit_i32x4_splat");
}

void LiftoffAssembler::emit_i64x2_splat(LiftoffRegister dst,
                                        LiftoffRegister src) {
  bailout(kSimd, "emit_i64x2_splat");
}

void LiftoffAssembler::emit_i64x2_eq(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_i64x2_eq");
}

void LiftoffAssembler::emit_i64x2_ne(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "i64x2_ne");
}

void LiftoffAssembler::emit_i64x2_gt_s(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "i64x2.gt_s");
}

void LiftoffAssembler::emit_i64x2_ge_s(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "i64x2.ge_s");
}

void LiftoffAssembler::emit_f32x4_splat(LiftoffRegister dst,
                                        LiftoffRegister src) {
  bailout(kSimd, "emit_f32x4_splat");
}

void LiftoffAssembler::emit_f64x2_splat(LiftoffRegister dst,
                                        LiftoffRegister src) {
  bailout(kSimd, "emit_f64x2_splat");
}

#define SIMD_BINOP(name1, name2)                                         \
  void LiftoffAssembler::emit_##name1##_extmul_low_##name2(              \
      LiftoffRegister dst, LiftoffRegister src1, LiftoffRegister src2) { \
    bailout(kSimd, "emit_" #name1 "_extmul_low_" #name2);                \
  }                                                                      \
  void LiftoffAssembler::emit_##name1##_extmul_high_##name2(             \
      LiftoffRegister dst, LiftoffRegister src1, LiftoffRegister src2) { \
    bailout(kSimd, "emit_" #name1 "_extmul_high_" #name2);               \
  }

SIMD_BINOP(i16x8, i8x16_s)
SIMD_BINOP(i16x8, i8x16_u)

SIMD_BINOP(i32x4, i16x8_s)
SIMD_BINOP(i32x4, i16x8_u)

SIMD_BINOP(i64x2, i32x4_s)
SIMD_BINOP(i64x2, i32x4_u)

#undef SIMD_BINOP

void LiftoffAssembler::emit_i16x8_q15mulr_sat_s(LiftoffRegister dst,
                                                LiftoffRegister src1,
                                                LiftoffRegister src2) {
  bailout(kSimd, "i16x8_q15mulr_sat_s");
}

void LiftoffAssembler::emit_i64x2_bitmask(LiftoffRegister dst,
                                          LiftoffRegister src) {
  bailout(kSimd, "i64x2_bitmask");
}

void LiftoffAssembler::emit_i64x2_sconvert_i32x4_low(LiftoffRegister dst,
                                                     LiftoffRegister src) {
  bailout(kSimd, "i64x2_sconvert_i32x4_low");
}

void LiftoffAssembler::emit_i64x2_sconvert_i32x4_high(LiftoffRegister dst,
                                                      LiftoffRegister src) {
  bailout(kSimd, "i64x2_sconvert_i32x4_high");
}

void LiftoffAssembler::emit_i64x2_uconvert_i32x4_low(LiftoffRegister dst,
                                                     LiftoffRegister src) {
  bailout(kSimd, "i64x2_uconvert_i32x4_low");
}

void LiftoffAssembler::emit_i64x2_uconvert_i32x4_high(LiftoffRegister dst,
                                                      LiftoffRegister src) {
  bailout(kSimd, "i64x2_uconvert_i32x4_high");
}

void LiftoffAssembler::emit_i8x16_eq(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_eq");
}

void LiftoffAssembler::emit_i8x16_ne(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_ne");
}

void LiftoffAssembler::emit_i8x16_gt_s(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_gt_s");
}

void LiftoffAssembler::emit_i8x16_gt_u(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_gt_u");
}

void LiftoffAssembler::emit_i8x16_ge_s(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_ge_s");
}

void LiftoffAssembler::emit_i8x16_ge_u(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_ge_u");
}

void LiftoffAssembler::emit_i16x8_eq(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_eq");
}

void LiftoffAssembler::emit_i16x8_ne(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_ne");
}

void LiftoffAssembler::emit_i16x8_gt_s(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_gt_s");
}

void LiftoffAssembler::emit_i16x8_gt_u(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_gt_u");
}

void LiftoffAssembler::emit_i16x8_ge_s(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_ge_s");
}

void LiftoffAssembler::emit_i16x8_ge_u(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_ge_u");
}

void LiftoffAssembler::emit_i32x4_eq(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_eq");
}

void LiftoffAssembler::emit_i32x4_ne(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_ne");
}

void LiftoffAssembler::emit_i32x4_gt_s(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_gt_s");
}

void LiftoffAssembler::emit_i32x4_gt_u(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_gt_u");
}

void LiftoffAssembler::emit_i32x4_ge_s(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_ge_s");
}

void LiftoffAssembler::emit_i32x4_ge_u(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_ge_u");
}

void LiftoffAssembler::emit_f32x4_eq(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_f32x4_eq");
}

void LiftoffAssembler::emit_f32x4_ne(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_f32x4_ne");
}

void LiftoffAssembler::emit_f32x4_lt(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_f32x4_lt");
}

void LiftoffAssembler::emit_f32x4_le(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_f32x4_le");
}

void LiftoffAssembler::emit_f64x2_convert_low_i32x4_s(LiftoffRegister dst,
                                                      LiftoffRegister src) {
  bailout(kSimd, "f64x2.convert_low_i32x4_s");
}

void LiftoffAssembler::emit_f64x2_convert_low_i32x4_u(LiftoffRegister dst,
                                                      LiftoffRegister src) {
  bailout(kSimd, "f64x2.convert_low_i32x4_u");
}

void LiftoffAssembler::emit_f64x2_promote_low_f32x4(LiftoffRegister dst,
                                                    LiftoffRegister src) {
  bailout(kSimd, "f64x2.promote_low_f32x4");
}

void LiftoffAssembler::emit_f32x4_demote_f64x2_zero(LiftoffRegister dst,
                                                    LiftoffRegister src) {
  bailout(kSimd, "f32x4.demote_f64x2_zero");
}

void LiftoffAssembler::emit_i32x4_trunc_sat_f64x2_s_zero(LiftoffRegister dst,
                                                         LiftoffRegister src) {
  bailout(kSimd, "i32x4.trunc_sat_f64x2_s_zero");
}

void LiftoffAssembler::emit_i32x4_trunc_sat_f64x2_u_zero(LiftoffRegister dst,
                                                         LiftoffRegister src) {
  bailout(kSimd, "i32x4.trunc_sat_f64x2_u_zero");
}

void LiftoffAssembler::emit_f64x2_eq(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_f64x2_eq");
}

void LiftoffAssembler::emit_f64x2_ne(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_f64x2_ne");
}

void LiftoffAssembler::emit_f64x2_lt(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_f64x2_lt");
}

void LiftoffAssembler::emit_f64x2_le(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_f64x2_le");
}

void LiftoffAssembler::emit_s128_const(LiftoffRegister dst,
                                       const uint8_t imms[16]) {
  bailout(kSimd, "emit_s128_const");
}

void LiftoffAssembler::emit_s128_not(LiftoffRegister dst, LiftoffRegister src) {
  bailout(kSimd, "emit_s128_not");
}

void LiftoffAssembler::emit_s128_and(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_s128_and");
}

void LiftoffAssembler::emit_s128_or(LiftoffRegister dst, LiftoffRegister lhs,
                                    LiftoffRegister rhs) {
  bailout(kSimd, "emit_s128_or");
}

void LiftoffAssembler::emit_s128_xor(LiftoffRegister dst, LiftoffRegister lhs,
                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_s128_xor");
}

void LiftoffAssembler::emit_s128_and_not(LiftoffRegister dst,
                                         LiftoffRegister lhs,
                                         LiftoffRegister rhs) {
  bailout(kSimd, "emit_s128_and_not");
}

void LiftoffAssembler::emit_s128_select(LiftoffRegister dst,
                                        LiftoffRegister src1,
                                        LiftoffRegister src2,
                                        LiftoffRegister mask) {
  bailout(kSimd, "emit_s128_select");
}

void LiftoffAssembler::emit_i8x16_neg(LiftoffRegister dst,
                                      LiftoffRegister src) {
  bailout(kSimd, "emit_i8x16_neg");
}

void LiftoffAssembler::emit_v128_anytrue(LiftoffRegister dst,
                                         LiftoffRegister src) {
  bailout(kSimd, "emit_v128_anytrue");
}

void LiftoffAssembler::emit_i8x16_alltrue(LiftoffRegister dst,
                                          LiftoffRegister src) {
  bailout(kSimd, "emit_i8x16_alltrue");
}

void LiftoffAssembler::emit_i8x16_bitmask(LiftoffRegister dst,
                                          LiftoffRegister src) {
  bailout(kSimd, "emit_i8x16_bitmask");
}

void LiftoffAssembler::emit_i8x16_shl(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_shl");
}

void LiftoffAssembler::emit_i8x16_shli(LiftoffRegister dst, LiftoffRegister lhs,
                                       int32_t rhs) {
  bailout(kSimd, "emit_i8x16_shli");
}

void LiftoffAssembler::emit_i8x16_shr_s(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_shr_s");
}

void LiftoffAssembler::emit_i8x16_shri_s(LiftoffRegister dst,
                                         LiftoffRegister lhs, int32_t rhs) {
  bailout(kSimd, "emit_i8x16_shri_s");
}

void LiftoffAssembler::emit_i8x16_shr_u(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_shr_u");
}

void LiftoffAssembler::emit_i8x16_shri_u(LiftoffRegister dst,
                                         LiftoffRegister lhs, int32_t rhs) {
  bailout(kSimd, "emit_i8x16_shri_u");
}

void LiftoffAssembler::emit_i8x16_add(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_add");
}

void LiftoffAssembler::emit_i8x16_add_sat_s(LiftoffRegister dst,
                                            LiftoffRegister lhs,
                                            LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_add_sat_s");
}

void LiftoffAssembler::emit_i8x16_add_sat_u(LiftoffRegister dst,
                                            LiftoffRegister lhs,
                                            LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_add_sat_u");
}

void LiftoffAssembler::emit_i8x16_sub(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_sub");
}

void LiftoffAssembler::emit_i8x16_sub_sat_s(LiftoffRegister dst,
                                            LiftoffRegister lhs,
                                            LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_sub_sat_s");
}

void LiftoffAssembler::emit_i8x16_sub_sat_u(LiftoffRegister dst,
                                            LiftoffRegister lhs,
                                            LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_sub_sat_u");
}

void LiftoffAssembler::emit_i8x16_min_s(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_min_s");
}

void LiftoffAssembler::emit_i8x16_min_u(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_min_u");
}

void LiftoffAssembler::emit_i8x16_max_s(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_max_s");
}

void LiftoffAssembler::emit_i8x16_max_u(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_max_u");
}

void LiftoffAssembler::emit_i16x8_neg(LiftoffRegister dst,
                                      LiftoffRegister src) {
  bailout(kSimd, "emit_i16x8_neg");
}

void LiftoffAssembler::emit_i16x8_alltrue(LiftoffRegister dst,
                                          LiftoffRegister src) {
  bailout(kSimd, "emit_i16x8_alltrue");
}

void LiftoffAssembler::emit_i16x8_bitmask(LiftoffRegister dst,
                                          LiftoffRegister src) {
  bailout(kSimd, "emit_i16x8_bitmask");
}

void LiftoffAssembler::emit_i16x8_shl(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_shl");
}

void LiftoffAssembler::emit_i16x8_shli(LiftoffRegister dst, LiftoffRegister lhs,
                                       int32_t rhs) {
  bailout(kSimd, "emit_i16x8_shli");
}

void LiftoffAssembler::emit_i16x8_shr_s(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_shr_s");
}

void LiftoffAssembler::emit_i16x8_shri_s(LiftoffRegister dst,
                                         LiftoffRegister lhs, int32_t rhs) {
  bailout(kSimd, "emit_i16x8_shri_s");
}

void LiftoffAssembler::emit_i16x8_shr_u(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_shr_u");
}

void LiftoffAssembler::emit_i16x8_shri_u(LiftoffRegister dst,
                                         LiftoffRegister lhs, int32_t rhs) {
  bailout(kSimd, "emit_i16x8_shri_u");
}

void LiftoffAssembler::emit_i16x8_add(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_add");
}

void LiftoffAssembler::emit_i16x8_add_sat_s(LiftoffRegister dst,
                                            LiftoffRegister lhs,
                                            LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_add_sat_s");
}

void LiftoffAssembler::emit_i16x8_add_sat_u(LiftoffRegister dst,
                                            LiftoffRegister lhs,
                                            LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_add_sat_u");
}

void LiftoffAssembler::emit_i16x8_sub(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_sub");
}

void LiftoffAssembler::emit_i16x8_sub_sat_s(LiftoffRegister dst,
                                            LiftoffRegister lhs,
                                            LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_sub_sat_s");
}

void LiftoffAssembler::emit_i16x8_sub_sat_u(LiftoffRegister dst,
                                            LiftoffRegister lhs,
                                            LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_sub_sat_u");
}

void LiftoffAssembler::emit_i16x8_mul(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_mul");
}

void LiftoffAssembler::emit_i16x8_min_s(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_min_s");
}

void LiftoffAssembler::emit_i16x8_min_u(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_min_u");
}

void LiftoffAssembler::emit_i16x8_max_s(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_max_s");
}

void LiftoffAssembler::emit_i16x8_max_u(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_max_u");
}

void LiftoffAssembler::emit_i32x4_neg(LiftoffRegister dst,
                                      LiftoffRegister src) {
  bailout(kSimd, "emit_i32x4_neg");
}

void LiftoffAssembler::emit_i32x4_alltrue(LiftoffRegister dst,
                                          LiftoffRegister src) {
  bailout(kSimd, "emit_i32x4_alltrue");
}

void LiftoffAssembler::emit_i32x4_bitmask(LiftoffRegister dst,
                                          LiftoffRegister src) {
  bailout(kSimd, "emit_i32x4_bitmask");
}

void LiftoffAssembler::emit_i32x4_shl(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_shl");
}

void LiftoffAssembler::emit_i32x4_shli(LiftoffRegister dst, LiftoffRegister lhs,
                                       int32_t rhs) {
  bailout(kSimd, "emit_i32x4_shli");
}

void LiftoffAssembler::emit_i32x4_shr_s(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_shr_s");
}

void LiftoffAssembler::emit_i32x4_shri_s(LiftoffRegister dst,
                                         LiftoffRegister lhs, int32_t rhs) {
  bailout(kSimd, "emit_i32x4_shri_s");
}

void LiftoffAssembler::emit_i32x4_shr_u(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_shr_u");
}

void LiftoffAssembler::emit_i32x4_shri_u(LiftoffRegister dst,
                                         LiftoffRegister lhs, int32_t rhs) {
  bailout(kSimd, "emit_i32x4_shri_u");
}

void LiftoffAssembler::emit_i32x4_add(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_add");
}

void LiftoffAssembler::emit_i32x4_sub(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_sub");
}

void LiftoffAssembler::emit_i32x4_mul(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_mul");
}

void LiftoffAssembler::emit_i32x4_min_s(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_min_s");
}

void LiftoffAssembler::emit_i32x4_min_u(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_min_u");
}

void LiftoffAssembler::emit_i32x4_max_s(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_max_s");
}

void LiftoffAssembler::emit_i32x4_max_u(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_max_u");
}

void LiftoffAssembler::emit_i32x4_dot_i16x8_s(LiftoffRegister dst,
                                              LiftoffRegister lhs,
                                              LiftoffRegister rhs) {
  bailout(kSimd, "emit_i32x4_dot_i16x8_s");
}

void LiftoffAssembler::emit_i64x2_neg(LiftoffRegister dst,
                                      LiftoffRegister src) {
  bailout(kSimd, "emit_i64x2_neg");
}

void LiftoffAssembler::emit_i64x2_alltrue(LiftoffRegister dst,
                                          LiftoffRegister src) {
  bailout(kSimd, "emit_i64x2_alltrue");
}

void LiftoffAssembler::emit_i64x2_shl(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i64x2_shl");
}

void LiftoffAssembler::emit_i64x2_shli(LiftoffRegister dst, LiftoffRegister lhs,
                                       int32_t rhs) {
  bailout(kSimd, "emit_i64x2_shli");
}

void LiftoffAssembler::emit_i64x2_shr_s(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i64x2_shr_s");
}

void LiftoffAssembler::emit_i64x2_shri_s(LiftoffRegister dst,
                                         LiftoffRegister lhs, int32_t rhs) {
  bailout(kSimd, "emit_i64x2_shri_s");
}

void LiftoffAssembler::emit_i64x2_shr_u(LiftoffRegister dst,
                                        LiftoffRegister lhs,
                                        LiftoffRegister rhs) {
  bailout(kSimd, "emit_i64x2_shr_u");
}

void LiftoffAssembler::emit_i64x2_shri_u(LiftoffRegister dst,
                                         LiftoffRegister lhs, int32_t rhs) {
  bailout(kSimd, "emit_i64x2_shri_u");
}

void LiftoffAssembler::emit_i64x2_add(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i64x2_add");
}

void LiftoffAssembler::emit_i64x2_sub(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i64x2_sub");
}

void LiftoffAssembler::emit_i64x2_mul(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_i64x2_mul");
}

void LiftoffAssembler::emit_f32x4_abs(LiftoffRegister dst,
                                      LiftoffRegister src) {
  bailout(kSimd, "emit_f32x4_abs");
}

void LiftoffAssembler::emit_f32x4_neg(LiftoffRegister dst,
                                      LiftoffRegister src) {
  bailout(kSimd, "emit_f32x4_neg");
}

void LiftoffAssembler::emit_f32x4_sqrt(LiftoffRegister dst,
                                       LiftoffRegister src) {
  bailout(kSimd, "emit_f32x4_sqrt");
}

bool LiftoffAssembler::emit_f32x4_ceil(LiftoffRegister dst,
                                       LiftoffRegister src) {
  bailout(kSimd, "emit_f32x4_ceil");
  return true;
}

bool LiftoffAssembler::emit_f32x4_floor(LiftoffRegister dst,
                                        LiftoffRegister src) {
  bailout(kSimd, "emit_f32x4_floor");
  return true;
}

bool LiftoffAssembler::emit_f32x4_trunc(LiftoffRegister dst,
                                        LiftoffRegister src) {
  bailout(kSimd, "emit_f32x4_trunc");
  return true;
}

bool LiftoffAssembler::emit_f32x4_nearest_int(LiftoffRegister dst,
                                              LiftoffRegister src) {
  bailout(kSimd, "emit_f32x4_nearest_int");
  return true;
}

void LiftoffAssembler::emit_f32x4_add(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_f32x4_add");
}

void LiftoffAssembler::emit_f32x4_sub(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_f32x4_sub");
}

void LiftoffAssembler::emit_f32x4_mul(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_f32x4_mul");
}

void LiftoffAssembler::emit_f32x4_div(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_f32x4_div");
}

void LiftoffAssembler::emit_f32x4_min(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_f32x4_min");
}

void LiftoffAssembler::emit_f32x4_max(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_f32x4_max");
}

void LiftoffAssembler::emit_f32x4_pmin(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_f32x4_pmin");
}

void LiftoffAssembler::emit_f32x4_pmax(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_f32x4_pmax");
}

void LiftoffAssembler::emit_f64x2_abs(LiftoffRegister dst,
                                      LiftoffRegister src) {
  bailout(kSimd, "emit_f64x2_abs");
}

void LiftoffAssembler::emit_f64x2_neg(LiftoffRegister dst,
                                      LiftoffRegister src) {
  bailout(kSimd, "emit_f64x2_neg");
}

void LiftoffAssembler::emit_f64x2_sqrt(LiftoffRegister dst,
                                       LiftoffRegister src) {
  bailout(kSimd, "emit_f64x2_sqrt");
}

bool LiftoffAssembler::emit_f64x2_ceil(LiftoffRegister dst,
                                       LiftoffRegister src) {
  bailout(kSimd, "emit_f64x2_ceil");
  return true;
}

bool LiftoffAssembler::emit_f64x2_floor(LiftoffRegister dst,
                                        LiftoffRegister src) {
  bailout(kSimd, "emit_f64x2_floor");
  return true;
}

bool LiftoffAssembler::emit_f64x2_trunc(LiftoffRegister dst,
                                        LiftoffRegister src) {
  bailout(kSimd, "emit_f64x2_trunc");
  return true;
}

bool LiftoffAssembler::emit_f64x2_nearest_int(LiftoffRegister dst,
                                              LiftoffRegister src) {
  bailout(kSimd, "emit_f64x2_nearest_int");
  return true;
}

void LiftoffAssembler::emit_f64x2_add(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_f64x2_add");
}

void LiftoffAssembler::emit_f64x2_sub(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_f64x2_sub");
}

void LiftoffAssembler::emit_f64x2_mul(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_f64x2_mul");
}

void LiftoffAssembler::emit_f64x2_div(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_f64x2_div");
}

void LiftoffAssembler::emit_f64x2_min(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_f64x2_min");
}

void LiftoffAssembler::emit_f64x2_max(LiftoffRegister dst, LiftoffRegister lhs,
                                      LiftoffRegister rhs) {
  bailout(kSimd, "emit_f64x2_max");
}

void LiftoffAssembler::emit_f64x2_pmin(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_f64x2_pmin");
}

void LiftoffAssembler::emit_f64x2_pmax(LiftoffRegister dst, LiftoffRegister lhs,
                                       LiftoffRegister rhs) {
  bailout(kSimd, "emit_f64x2_pmax");
}

void LiftoffAssembler::emit_i32x4_sconvert_f32x4(LiftoffRegister dst,
                                                 LiftoffRegister src) {
  bailout(kSimd, "emit_i32x4_sconvert_f32x4");
}

void LiftoffAssembler::emit_i32x4_uconvert_f32x4(LiftoffRegister dst,
                                                 LiftoffRegister src) {
  bailout(kSimd, "emit_i32x4_uconvert_f32x4");
}

void LiftoffAssembler::emit_f32x4_sconvert_i32x4(LiftoffRegister dst,
                                                 LiftoffRegister src) {
  bailout(kSimd, "emit_f32x4_sconvert_i32x4");
}

void LiftoffAssembler::emit_f32x4_uconvert_i32x4(LiftoffRegister dst,
                                                 LiftoffRegister src) {
  bailout(kSimd, "emit_f32x4_uconvert_i32x4");
}

void LiftoffAssembler::emit_i8x16_sconvert_i16x8(LiftoffRegister dst,
                                                 LiftoffRegister lhs,
                                                 LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_sconvert_i16x8");
}

void LiftoffAssembler::emit_i8x16_uconvert_i16x8(LiftoffRegister dst,
                                                 LiftoffRegister lhs,
                                                 LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_uconvert_i16x8");
}

void LiftoffAssembler::emit_i16x8_sconvert_i32x4(LiftoffRegister dst,
                                                 LiftoffRegister lhs,
                                                 LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_sconvert_i32x4");
}

void LiftoffAssembler::emit_i16x8_uconvert_i32x4(LiftoffRegister dst,
                                                 LiftoffRegister lhs,
                                                 LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_uconvert_i32x4");
}

void LiftoffAssembler::emit_i16x8_sconvert_i8x16_low(LiftoffRegister dst,
                                                     LiftoffRegister src) {
  bailout(kSimd, "emit_i16x8_sconvert_i8x16_low");
}

void LiftoffAssembler::emit_i16x8_sconvert_i8x16_high(LiftoffRegister dst,
                                                      LiftoffRegister src) {
  bailout(kSimd, "emit_i16x8_sconvert_i8x16_high");
}

void LiftoffAssembler::emit_i16x8_uconvert_i8x16_low(LiftoffRegister dst,
                                                     LiftoffRegister src) {
  bailout(kSimd, "emit_i16x8_uconvert_i8x16_low");
}

void LiftoffAssembler::emit_i16x8_uconvert_i8x16_high(LiftoffRegister dst,
                                                      LiftoffRegister src) {
  bailout(kSimd, "emit_i16x8_uconvert_i8x16_high");
}

void LiftoffAssembler::emit_i32x4_sconvert_i16x8_low(LiftoffRegister dst,
                                                     LiftoffRegister src) {
  bailout(kSimd, "emit_i32x4_sconvert_i16x8_low");
}

void LiftoffAssembler::emit_i32x4_sconvert_i16x8_high(LiftoffRegister dst,
                                                      LiftoffRegister src) {
  bailout(kSimd, "emit_i32x4_sconvert_i16x8_high");
}

void LiftoffAssembler::emit_i32x4_uconvert_i16x8_low(LiftoffRegister dst,
                                                     LiftoffRegister src) {
  bailout(kSimd, "emit_i32x4_uconvert_i16x8_low");
}

void LiftoffAssembler::emit_i32x4_uconvert_i16x8_high(LiftoffRegister dst,
                                                      LiftoffRegister src) {
  bailout(kSimd, "emit_i32x4_uconvert_i16x8_high");
}

void LiftoffAssembler::emit_i8x16_rounding_average_u(LiftoffRegister dst,
                                                     LiftoffRegister lhs,
                                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_i8x16_rounding_average_u");
}

void LiftoffAssembler::emit_i16x8_rounding_average_u(LiftoffRegister dst,
                                                     LiftoffRegister lhs,
                                                     LiftoffRegister rhs) {
  bailout(kSimd, "emit_i16x8_rounding_average_u");
}

void LiftoffAssembler::emit_i8x16_abs(LiftoffRegister dst,
                                      LiftoffRegister src) {
  bailout(kSimd, "emit_i8x16_abs");
}

void LiftoffAssembler::emit_i16x8_abs(LiftoffRegister dst,
                                      LiftoffRegister src) {
  bailout(kSimd, "emit_i16x8_abs");
}

void LiftoffAssembler::emit_i64x2_abs(LiftoffRegister dst,
                                      LiftoffRegister src) {
  bailout(kSimd, "emit_i64x2_abs");
}

void LiftoffAssembler::emit_i32x4_extadd_pairwise_i16x8_s(LiftoffRegister dst,
                                                          LiftoffRegister src) {
  bailout(kSimd, "i32x4.extadd_pairwise_i16x8_s");
}

void LiftoffAssembler::emit_i32x4_extadd_pairwise_i16x8_u(LiftoffRegister dst,
                                                          LiftoffRegister src) {
  bailout(kSimd, "i32x4.extadd_pairwise_i16x8_u");
}

void LiftoffAssembler::emit_i16x8_extadd_pairwise_i8x16_s(LiftoffRegister dst,
                                                          LiftoffRegister src) {
  bailout(kSimd, "i16x8.extadd_pairwise_i8x16_s");
}

void LiftoffAssembler::emit_i16x8_extadd_pairwise_i8x16_u(LiftoffRegister dst,
                                                          LiftoffRegister src) {
  bailout(kSimd, "i16x8.extadd_pairwise_i8x16_u");
}


void LiftoffAssembler::emit_i32x4_abs(LiftoffRegister dst,
                                      LiftoffRegister src) {
  bailout(kSimd, "emit_i32x4_abs");
}

void LiftoffAssembler::emit_i8x16_extract_lane_s(LiftoffRegister dst,
                                                 LiftoffRegister lhs,
                                                 uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_i8x16_extract_lane_s");
}

void LiftoffAssembler::emit_i8x16_extract_lane_u(LiftoffRegister dst,
                                                 LiftoffRegister lhs,
                                                 uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_i8x16_extract_lane_u");
}

void LiftoffAssembler::emit_i16x8_extract_lane_s(LiftoffRegister dst,
                                                 LiftoffRegister lhs,
                                                 uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_i16x8_extract_lane_s");
}

void LiftoffAssembler::emit_i16x8_extract_lane_u(LiftoffRegister dst,
                                                 LiftoffRegister lhs,
                                                 uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_i16x8_extract_lane_u");
}

void LiftoffAssembler::emit_i32x4_extract_lane(LiftoffRegister dst,
                                               LiftoffRegister lhs,
                                               uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_i32x4_extract_lane");
}

void LiftoffAssembler::emit_i64x2_extract_lane(LiftoffRegister dst,
                                               LiftoffRegister lhs,
                                               uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_i64x2_extract_lane");
}

void LiftoffAssembler::emit_f32x4_extract_lane(LiftoffRegister dst,
                                               LiftoffRegister lhs,
                                               uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_f32x4_extract_lane");
}

void LiftoffAssembler::emit_f64x2_extract_lane(LiftoffRegister dst,
                                               LiftoffRegister lhs,
                                               uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_f64x2_extract_lane");
}

void LiftoffAssembler::emit_i8x16_replace_lane(LiftoffRegister dst,
                                               LiftoffRegister src1,
                                               LiftoffRegister src2,
                                               uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_i8x16_replace_lane");
}

void LiftoffAssembler::emit_i16x8_replace_lane(LiftoffRegister dst,
                                               LiftoffRegister src1,
                                               LiftoffRegister src2,
                                               uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_i16x8_replace_lane");
}

void LiftoffAssembler::emit_i32x4_replace_lane(LiftoffRegister dst,
                                               LiftoffRegister src1,
                                               LiftoffRegister src2,
                                               uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_i32x4_replace_lane");
}

void LiftoffAssembler::emit_i64x2_replace_lane(LiftoffRegister dst,
                                               LiftoffRegister src1,
                                               LiftoffRegister src2,
                                               uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_i64x2_replace_lane");
}

void LiftoffAssembler::emit_f32x4_replace_lane(LiftoffRegister dst,
                                               LiftoffRegister src1,
                                               LiftoffRegister src2,
                                               uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_f32x4_replace_lane");
}

void LiftoffAssembler::emit_f64x2_replace_lane(LiftoffRegister dst,
                                               LiftoffRegister src1,
                                               LiftoffRegister src2,
                                               uint8_t imm_lane_idx) {
  bailout(kSimd, "emit_f64x2_replace_lane");
}

void LiftoffAssembler::emit_s128_set_if_nan(Register dst, DoubleRegister src,
                                            Register tmp_gp,
                                            DoubleRegister tmp_fp,
                                            ValueKind lane_kind) {
  bailout(kSimd, "emit_s128_set_if_nan");
}

void LiftoffAssembler::StackCheck(Label* ool_code, Register limit_address) {
  TurboAssembler::Uld(limit_address, MemOperand(limit_address));
  TurboAssembler::Branch(ool_code, ule, sp, Operand(limit_address));
}

void LiftoffAssembler::CallTrapCallbackForTesting() {
  PrepareCallCFunction(0, GetUnusedRegister(kGpReg, {}).gp());
  CallCFunction(ExternalReference::wasm_call_trap_callback_for_testing(), 0);
}

void LiftoffAssembler::AssertUnreachable(AbortReason reason) {
  if (FLAG_debug_code) Abort(reason);
}

void LiftoffAssembler::PushRegisters(LiftoffRegList regs) {
  LiftoffRegList gp_regs = regs & kGpCacheRegList;
  int32_t num_gp_regs = gp_regs.GetNumRegsSet();
  if (num_gp_regs) {
    int32_t offset = num_gp_regs * kSystemPointerSize;
    Add64(sp, sp, Operand(-offset));
    while (!gp_regs.is_empty()) {
      LiftoffRegister reg = gp_regs.GetFirstRegSet();
      offset -= kSystemPointerSize;
      Sd(reg.gp(), MemOperand(sp, offset));
      gp_regs.clear(reg);
    }
    DCHECK_EQ(offset, 0);
  }
  LiftoffRegList fp_regs = regs & kFpCacheRegList;
  int32_t num_fp_regs = fp_regs.GetNumRegsSet();
  if (num_fp_regs) {
    Add64(sp, sp, Operand(-(num_fp_regs * kStackSlotSize)));
    int32_t offset = 0;
    while (!fp_regs.is_empty()) {
      LiftoffRegister reg = fp_regs.GetFirstRegSet();
      TurboAssembler::StoreDouble(reg.fp(), MemOperand(sp, offset));
      fp_regs.clear(reg);
      offset += sizeof(double);
    }
    DCHECK_EQ(offset, num_fp_regs * sizeof(double));
  }
}

void LiftoffAssembler::PopRegisters(LiftoffRegList regs) {
  LiftoffRegList fp_regs = regs & kFpCacheRegList;
  int32_t fp_offset = 0;
  while (!fp_regs.is_empty()) {
    LiftoffRegister reg = fp_regs.GetFirstRegSet();
    TurboAssembler::LoadDouble(reg.fp(), MemOperand(sp, fp_offset));
    fp_regs.clear(reg);
    fp_offset += sizeof(double);
  }
  if (fp_offset) Add64(sp, sp, Operand(fp_offset));
  LiftoffRegList gp_regs = regs & kGpCacheRegList;
  int32_t gp_offset = 0;
  while (!gp_regs.is_empty()) {
    LiftoffRegister reg = gp_regs.GetLastRegSet();
    Ld(reg.gp(), MemOperand(sp, gp_offset));
    gp_regs.clear(reg);
    gp_offset += kSystemPointerSize;
  }
  Add64(sp, sp, Operand(gp_offset));
}

void LiftoffAssembler::RecordSpillsInSafepoint(Safepoint& safepoint,
                                               LiftoffRegList all_spills,
                                               LiftoffRegList ref_spills,
                                               int spill_offset) {
  int spill_space_size = 0;
  while (!all_spills.is_empty()) {
    LiftoffRegister reg = all_spills.GetFirstRegSet();
    if (ref_spills.has(reg)) {
      safepoint.DefinePointerSlot(spill_offset);
    }
    all_spills.clear(reg);
    ++spill_offset;
    spill_space_size += kSystemPointerSize;
  }
  // Record the number of additional spill slots.
  RecordOolSpillSpaceSize(spill_space_size);
}

void LiftoffAssembler::DropStackSlotsAndRet(uint32_t num_stack_slots) {
  TurboAssembler::DropAndRet(static_cast<int>(num_stack_slots));
}

void LiftoffAssembler::CallC(const ValueKindSig* sig,
                             const LiftoffRegister* args,
                             const LiftoffRegister* rets,
                             ValueKind out_argument_kind, int stack_bytes,
                             ExternalReference ext_ref) {
  Add64(sp, sp, Operand(-stack_bytes));

  int arg_bytes = 0;
  for (ValueKind param_kind : sig->parameters()) {
    liftoff::Store(this, sp, arg_bytes, *args++, param_kind);
    arg_bytes += element_size_bytes(param_kind);
  }
  DCHECK_LE(arg_bytes, stack_bytes);

  // Pass a pointer to the buffer with the arguments to the C function.
  // On RISC-V, the first argument is passed in {a0}.
  constexpr Register kFirstArgReg = a0;
  mv(kFirstArgReg, sp);

  // Now call the C function.
  constexpr int kNumCCallArgs = 1;
  PrepareCallCFunction(kNumCCallArgs, kScratchReg);
  CallCFunction(ext_ref, kNumCCallArgs);

  // Move return value to the right register.
  const LiftoffRegister* next_result_reg = rets;
  if (sig->return_count() > 0) {
    DCHECK_EQ(1, sig->return_count());
    constexpr Register kReturnReg = a0;
    if (kReturnReg != next_result_reg->gp()) {
      Move(*next_result_reg, LiftoffRegister(kReturnReg), sig->GetReturn(0));
    }
    ++next_result_reg;
  }

  // Load potential output value from the buffer on the stack.
  if (out_argument_kind != kVoid) {
    liftoff::Load(this, *next_result_reg, MemOperand(sp, 0), out_argument_kind);
  }

  Add64(sp, sp, Operand(stack_bytes));
}

void LiftoffAssembler::CallNativeWasmCode(Address addr) {
  Call(addr, RelocInfo::WASM_CALL);
}

void LiftoffAssembler::TailCallNativeWasmCode(Address addr) {
  Jump(addr, RelocInfo::WASM_CALL);
}

void LiftoffAssembler::CallIndirect(const ValueKindSig* sig,
                                    compiler::CallDescriptor* call_descriptor,
                                    Register target) {
  if (target == no_reg) {
    pop(t6);
    Call(t6);
  } else {
    Call(target);
  }
}

void LiftoffAssembler::TailCallIndirect(Register target) {
  if (target == no_reg) {
    Pop(t6);
    Jump(t6);
  } else {
    Jump(target);
  }
}

void LiftoffAssembler::CallRuntimeStub(WasmCode::RuntimeStubId sid) {
  // A direct call to a wasm runtime stub defined in this module.
  // Just encode the stub index. This will be patched at relocation.
  Call(static_cast<Address>(sid), RelocInfo::WASM_STUB_CALL);
}

void LiftoffAssembler::AllocateStackSlot(Register addr, uint32_t size) {
  Add64(sp, sp, Operand(-size));
  TurboAssembler::Move(addr, sp);
}

void LiftoffAssembler::DeallocateStackSlot(uint32_t size) {
  Add64(sp, sp, Operand(size));
}

void LiftoffAssembler::MaybeOSR() {}

void LiftoffAssembler::emit_set_if_nan(Register dst, FPURegister src,
                                       ValueKind kind) {
  UseScratchRegisterScope temps(this);
  Register scratch = temps.Acquire();
  li(scratch, 1);
  if (kind == kF32) {
    feq_s(scratch, src, src);  // rd <- !isNan(src)
  } else {
    DCHECK_EQ(kind, kF64);
    feq_d(scratch, src, src);  // rd <- !isNan(src)
  }
  not_(scratch, scratch);
  Sd(scratch, MemOperand(dst));
}

void LiftoffStackSlots::Construct(int param_slots) {
  DCHECK_LT(0, slots_.size());
  SortInPushOrder();
  int last_stack_slot = param_slots;
  for (auto& slot : slots_) {
    const int stack_slot = slot.dst_slot_;
    int stack_decrement = (last_stack_slot - stack_slot) * kSystemPointerSize;
    DCHECK_LT(0, stack_decrement);
    last_stack_slot = stack_slot;
    const LiftoffAssembler::VarState& src = slot.src_;
    switch (src.loc()) {
      case LiftoffAssembler::VarState::kStack:
        if (src.kind() != kS128) {
          asm_->AllocateStackSpace(stack_decrement - kSystemPointerSize);
          asm_->Ld(kScratchReg, liftoff::GetStackSlot(slot.src_offset_));
          asm_->push(kScratchReg);
        } else {
          asm_->AllocateStackSpace(stack_decrement - kSimd128Size);
          asm_->Ld(kScratchReg, liftoff::GetStackSlot(slot.src_offset_ - 8));
          asm_->push(kScratchReg);
          asm_->Ld(kScratchReg, liftoff::GetStackSlot(slot.src_offset_));
          asm_->push(kScratchReg);
        }
        break;
      case LiftoffAssembler::VarState::kRegister: {
        int pushed_bytes = SlotSizeInBytes(slot);
        asm_->AllocateStackSpace(stack_decrement - pushed_bytes);
        liftoff::push(asm_, src.reg(), src.kind());
        break;
      }
      case LiftoffAssembler::VarState::kIntConst: {
        asm_->AllocateStackSpace(stack_decrement - kSystemPointerSize);
        asm_->li(kScratchReg, Operand(src.i32_const()));
        asm_->push(kScratchReg);
        break;
      }
    }
  }
}
}  // namespace wasm
}  // namespace internal
}  // namespace v8

#endif  // V8_WASM_BASELINE_RISCV64_LIFTOFF_ASSEMBLER_RISCV64_H_

Kontol Shell Bypass