%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµùÕ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream
// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_BASELINE_ARM_BASELINE_ASSEMBLER_ARM_INL_H_ #define V8_BASELINE_ARM_BASELINE_ASSEMBLER_ARM_INL_H_ #include "src/baseline/baseline-assembler.h" #include "src/codegen/arm/assembler-arm-inl.h" #include "src/codegen/interface-descriptors.h" namespace v8 { namespace internal { namespace baseline { class BaselineAssembler::ScratchRegisterScope { public: explicit ScratchRegisterScope(BaselineAssembler* assembler) : assembler_(assembler), prev_scope_(assembler->scratch_register_scope_), wrapped_scope_(assembler->masm()) { if (!assembler_->scratch_register_scope_) { // If we haven't opened a scratch scope yet, for the first one add a // couple of extra registers. DCHECK(wrapped_scope_.CanAcquire()); wrapped_scope_.Include(r8, r9); wrapped_scope_.Include(kInterpreterBytecodeOffsetRegister); } assembler_->scratch_register_scope_ = this; } ~ScratchRegisterScope() { assembler_->scratch_register_scope_ = prev_scope_; } Register AcquireScratch() { return wrapped_scope_.Acquire(); } private: BaselineAssembler* assembler_; ScratchRegisterScope* prev_scope_; UseScratchRegisterScope wrapped_scope_; }; // TODO(v8:11429,leszeks): Unify condition names in the MacroAssembler. enum class Condition : uint32_t { kEqual = static_cast<uint32_t>(eq), kNotEqual = static_cast<uint32_t>(ne), kLessThan = static_cast<uint32_t>(lt), kGreaterThan = static_cast<uint32_t>(gt), kLessThanEqual = static_cast<uint32_t>(le), kGreaterThanEqual = static_cast<uint32_t>(ge), kUnsignedLessThan = static_cast<uint32_t>(lo), kUnsignedGreaterThan = static_cast<uint32_t>(hi), kUnsignedLessThanEqual = static_cast<uint32_t>(ls), kUnsignedGreaterThanEqual = static_cast<uint32_t>(hs), kOverflow = static_cast<uint32_t>(vs), kNoOverflow = static_cast<uint32_t>(vc), kZero = static_cast<uint32_t>(eq), kNotZero = static_cast<uint32_t>(ne), }; inline internal::Condition AsMasmCondition(Condition cond) { // This is important for arm, where the internal::Condition where each value // represents an encoded bit field value. STATIC_ASSERT(sizeof(internal::Condition) == sizeof(Condition)); return static_cast<internal::Condition>(cond); } namespace detail { #ifdef DEBUG inline bool Clobbers(Register target, MemOperand op) { return op.rn() == target || op.rm() == target; } #endif } // namespace detail #define __ masm_-> MemOperand BaselineAssembler::RegisterFrameOperand( interpreter::Register interpreter_register) { return MemOperand(fp, interpreter_register.ToOperand() * kSystemPointerSize); } MemOperand BaselineAssembler::FeedbackVectorOperand() { return MemOperand(fp, BaselineFrameConstants::kFeedbackVectorFromFp); } void BaselineAssembler::Bind(Label* label) { __ bind(label); } void BaselineAssembler::BindWithoutJumpTarget(Label* label) { __ bind(label); } void BaselineAssembler::JumpTarget() { // NOP on arm. } void BaselineAssembler::Jump(Label* target, Label::Distance distance) { __ b(target); } void BaselineAssembler::JumpIfRoot(Register value, RootIndex index, Label* target, Label::Distance) { __ JumpIfRoot(value, index, target); } void BaselineAssembler::JumpIfNotRoot(Register value, RootIndex index, Label* target, Label::Distance) { __ JumpIfNotRoot(value, index, target); } void BaselineAssembler::JumpIfSmi(Register value, Label* target, Label::Distance) { __ JumpIfSmi(value, target); } void BaselineAssembler::JumpIfNotSmi(Register value, Label* target, Label::Distance) { __ JumpIfNotSmi(value, target); } void BaselineAssembler::CallBuiltin(Builtin builtin) { // __ CallBuiltin(static_cast<int>(builtin)); ASM_CODE_COMMENT_STRING(masm_, __ CommentForOffHeapTrampoline("call", builtin)); ScratchRegisterScope temps(this); Register temp = temps.AcquireScratch(); __ LoadEntryFromBuiltin(builtin, temp); __ Call(temp); } void BaselineAssembler::TailCallBuiltin(Builtin builtin) { ASM_CODE_COMMENT_STRING(masm_, __ CommentForOffHeapTrampoline("tail call", builtin)); ScratchRegisterScope temps(this); Register temp = temps.AcquireScratch(); __ LoadEntryFromBuiltin(builtin, temp); __ Jump(temp); } void BaselineAssembler::TestAndBranch(Register value, int mask, Condition cc, Label* target, Label::Distance) { __ tst(value, Operand(mask)); __ b(AsMasmCondition(cc), target); } void BaselineAssembler::JumpIf(Condition cc, Register lhs, const Operand& rhs, Label* target, Label::Distance) { __ cmp(lhs, Operand(rhs)); __ b(AsMasmCondition(cc), target); } void BaselineAssembler::JumpIfObjectType(Condition cc, Register object, InstanceType instance_type, Register map, Label* target, Label::Distance) { ScratchRegisterScope temps(this); Register type = temps.AcquireScratch(); __ LoadMap(map, object); __ ldrh(type, FieldMemOperand(map, Map::kInstanceTypeOffset)); JumpIf(cc, type, Operand(instance_type), target); } void BaselineAssembler::JumpIfInstanceType(Condition cc, Register map, InstanceType instance_type, Label* target, Label::Distance) { ScratchRegisterScope temps(this); Register type = temps.AcquireScratch(); if (FLAG_debug_code) { __ AssertNotSmi(map); __ CompareObjectType(map, type, type, MAP_TYPE); __ Assert(eq, AbortReason::kUnexpectedValue); } __ ldrh(type, FieldMemOperand(map, Map::kInstanceTypeOffset)); JumpIf(cc, type, Operand(instance_type), target); } void BaselineAssembler::JumpIfPointer(Condition cc, Register value, MemOperand operand, Label* target, Label::Distance) { ScratchRegisterScope temps(this); Register tmp = temps.AcquireScratch(); __ ldr(tmp, operand); JumpIf(cc, value, Operand(tmp), target); } void BaselineAssembler::JumpIfSmi(Condition cc, Register value, Smi smi, Label* target, Label::Distance) { __ AssertSmi(value); JumpIf(cc, value, Operand(smi), target); } void BaselineAssembler::JumpIfSmi(Condition cc, Register lhs, Register rhs, Label* target, Label::Distance) { __ AssertSmi(lhs); __ AssertSmi(rhs); JumpIf(cc, lhs, Operand(rhs), target); } void BaselineAssembler::JumpIfTagged(Condition cc, Register value, MemOperand operand, Label* target, Label::Distance) { ScratchRegisterScope temps(this); Register tmp = temps.AcquireScratch(); __ ldr(tmp, operand); JumpIf(cc, value, Operand(tmp), target); } void BaselineAssembler::JumpIfTagged(Condition cc, MemOperand operand, Register value, Label* target, Label::Distance) { ScratchRegisterScope temps(this); Register tmp = temps.AcquireScratch(); __ ldr(tmp, operand); JumpIf(cc, tmp, Operand(value), target); } void BaselineAssembler::JumpIfByte(Condition cc, Register value, int32_t byte, Label* target, Label::Distance) { JumpIf(cc, value, Operand(byte), target); } void BaselineAssembler::Move(interpreter::Register output, Register source) { Move(RegisterFrameOperand(output), source); } void BaselineAssembler::Move(Register output, TaggedIndex value) { __ mov(output, Operand(value.ptr())); } void BaselineAssembler::Move(MemOperand output, Register source) { __ str(source, output); } void BaselineAssembler::Move(Register output, ExternalReference reference) { __ Move32BitImmediate(output, Operand(reference)); } void BaselineAssembler::Move(Register output, Handle<HeapObject> value) { __ Move32BitImmediate(output, Operand(value)); } void BaselineAssembler::Move(Register output, int32_t value) { __ mov(output, Operand(value)); } void BaselineAssembler::MoveMaybeSmi(Register output, Register source) { __ mov(output, source); } void BaselineAssembler::MoveSmi(Register output, Register source) { __ mov(output, source); } namespace detail { template <typename Arg> inline Register ToRegister(BaselineAssembler* basm, BaselineAssembler::ScratchRegisterScope* scope, Arg arg) { Register reg = scope->AcquireScratch(); basm->Move(reg, arg); return reg; } inline Register ToRegister(BaselineAssembler* basm, BaselineAssembler::ScratchRegisterScope* scope, Register reg) { return reg; } template <typename... Args> struct PushAllHelper; template <> struct PushAllHelper<> { static int Push(BaselineAssembler* basm) { return 0; } static int PushReverse(BaselineAssembler* basm) { return 0; } }; // TODO(ishell): try to pack sequence of pushes into one instruction by // looking at regiser codes. For example, Push(r1, r2, r5, r0, r3, r4) // could be generated as two pushes: Push(r1, r2, r5) and Push(r0, r3, r4). template <typename Arg> struct PushAllHelper<Arg> { static int Push(BaselineAssembler* basm, Arg arg) { BaselineAssembler::ScratchRegisterScope scope(basm); basm->masm()->Push(ToRegister(basm, &scope, arg)); return 1; } static int PushReverse(BaselineAssembler* basm, Arg arg) { return Push(basm, arg); } }; // TODO(ishell): try to pack sequence of pushes into one instruction by // looking at regiser codes. For example, Push(r1, r2, r5, r0, r3, r4) // could be generated as two pushes: Push(r1, r2, r5) and Push(r0, r3, r4). template <typename Arg, typename... Args> struct PushAllHelper<Arg, Args...> { static int Push(BaselineAssembler* basm, Arg arg, Args... args) { PushAllHelper<Arg>::Push(basm, arg); return 1 + PushAllHelper<Args...>::Push(basm, args...); } static int PushReverse(BaselineAssembler* basm, Arg arg, Args... args) { int nargs = PushAllHelper<Args...>::PushReverse(basm, args...); PushAllHelper<Arg>::Push(basm, arg); return nargs + 1; } }; template <> struct PushAllHelper<interpreter::RegisterList> { static int Push(BaselineAssembler* basm, interpreter::RegisterList list) { for (int reg_index = 0; reg_index < list.register_count(); ++reg_index) { PushAllHelper<interpreter::Register>::Push(basm, list[reg_index]); } return list.register_count(); } static int PushReverse(BaselineAssembler* basm, interpreter::RegisterList list) { for (int reg_index = list.register_count() - 1; reg_index >= 0; --reg_index) { PushAllHelper<interpreter::Register>::Push(basm, list[reg_index]); } return list.register_count(); } }; template <typename... T> struct PopAllHelper; template <> struct PopAllHelper<> { static void Pop(BaselineAssembler* basm) {} }; // TODO(ishell): try to pack sequence of pops into one instruction by // looking at regiser codes. For example, Pop(r1, r2, r5, r0, r3, r4) // could be generated as two pops: Pop(r1, r2, r5) and Pop(r0, r3, r4). template <> struct PopAllHelper<Register> { static void Pop(BaselineAssembler* basm, Register reg) { basm->masm()->Pop(reg); } }; template <typename... T> struct PopAllHelper<Register, T...> { static void Pop(BaselineAssembler* basm, Register reg, T... tail) { PopAllHelper<Register>::Pop(basm, reg); PopAllHelper<T...>::Pop(basm, tail...); } }; } // namespace detail template <typename... T> int BaselineAssembler::Push(T... vals) { return detail::PushAllHelper<T...>::Push(this, vals...); } template <typename... T> void BaselineAssembler::PushReverse(T... vals) { detail::PushAllHelper<T...>::PushReverse(this, vals...); } template <typename... T> void BaselineAssembler::Pop(T... registers) { detail::PopAllHelper<T...>::Pop(this, registers...); } void BaselineAssembler::LoadTaggedPointerField(Register output, Register source, int offset) { __ ldr(output, FieldMemOperand(source, offset)); } void BaselineAssembler::LoadTaggedSignedField(Register output, Register source, int offset) { __ ldr(output, FieldMemOperand(source, offset)); } void BaselineAssembler::LoadTaggedAnyField(Register output, Register source, int offset) { __ ldr(output, FieldMemOperand(source, offset)); } void BaselineAssembler::LoadByteField(Register output, Register source, int offset) { __ ldrb(output, FieldMemOperand(source, offset)); } void BaselineAssembler::StoreTaggedSignedField(Register target, int offset, Smi value) { ASM_CODE_COMMENT(masm_); ScratchRegisterScope temps(this); Register tmp = temps.AcquireScratch(); __ mov(tmp, Operand(value)); __ str(tmp, FieldMemOperand(target, offset)); } void BaselineAssembler::StoreTaggedFieldWithWriteBarrier(Register target, int offset, Register value) { ASM_CODE_COMMENT(masm_); DCHECK(!AreAliased(target, value)); __ str(value, FieldMemOperand(target, offset)); __ RecordWriteField(target, offset, value, kLRHasNotBeenSaved, SaveFPRegsMode::kIgnore); } void BaselineAssembler::StoreTaggedFieldNoWriteBarrier(Register target, int offset, Register value) { __ str(value, FieldMemOperand(target, offset)); } void BaselineAssembler::AddToInterruptBudgetAndJumpIfNotExceeded( int32_t weight, Label* skip_interrupt_label) { ASM_CODE_COMMENT(masm_); ScratchRegisterScope scratch_scope(this); Register feedback_cell = scratch_scope.AcquireScratch(); LoadFunction(feedback_cell); LoadTaggedPointerField(feedback_cell, feedback_cell, JSFunction::kFeedbackCellOffset); Register interrupt_budget = scratch_scope.AcquireScratch(); __ ldr(interrupt_budget, FieldMemOperand(feedback_cell, FeedbackCell::kInterruptBudgetOffset)); // Remember to set flags as part of the add! __ add(interrupt_budget, interrupt_budget, Operand(weight), SetCC); __ str(interrupt_budget, FieldMemOperand(feedback_cell, FeedbackCell::kInterruptBudgetOffset)); if (skip_interrupt_label) { // Use compare flags set by add DCHECK_LT(weight, 0); __ b(ge, skip_interrupt_label); } } void BaselineAssembler::AddToInterruptBudgetAndJumpIfNotExceeded( Register weight, Label* skip_interrupt_label) { ASM_CODE_COMMENT(masm_); ScratchRegisterScope scratch_scope(this); Register feedback_cell = scratch_scope.AcquireScratch(); LoadFunction(feedback_cell); LoadTaggedPointerField(feedback_cell, feedback_cell, JSFunction::kFeedbackCellOffset); Register interrupt_budget = scratch_scope.AcquireScratch(); __ ldr(interrupt_budget, FieldMemOperand(feedback_cell, FeedbackCell::kInterruptBudgetOffset)); // Remember to set flags as part of the add! __ add(interrupt_budget, interrupt_budget, weight, SetCC); __ str(interrupt_budget, FieldMemOperand(feedback_cell, FeedbackCell::kInterruptBudgetOffset)); if (skip_interrupt_label) __ b(ge, skip_interrupt_label); } void BaselineAssembler::AddSmi(Register lhs, Smi rhs) { __ add(lhs, lhs, Operand(rhs)); } void BaselineAssembler::Switch(Register reg, int case_value_base, Label** labels, int num_labels) { ASM_CODE_COMMENT(masm_); Label fallthrough; if (case_value_base != 0) { __ sub(reg, reg, Operand(case_value_base)); } // Mostly copied from code-generator-arm.cc ScratchRegisterScope scope(this); JumpIf(Condition::kUnsignedGreaterThanEqual, reg, Operand(num_labels), &fallthrough); // Ensure to emit the constant pool first if necessary. __ CheckConstPool(true, true); __ BlockConstPoolFor(num_labels); int entry_size_log2 = 2; __ add(pc, pc, Operand(reg, LSL, entry_size_log2), LeaveCC, lo); __ b(&fallthrough); for (int i = 0; i < num_labels; ++i) { __ b(labels[i]); } __ bind(&fallthrough); } #undef __ #define __ basm. void BaselineAssembler::EmitReturn(MacroAssembler* masm) { ASM_CODE_COMMENT(masm); BaselineAssembler basm(masm); Register weight = BaselineLeaveFrameDescriptor::WeightRegister(); Register params_size = BaselineLeaveFrameDescriptor::ParamsSizeRegister(); { ASM_CODE_COMMENT_STRING(masm, "Update Interrupt Budget"); Label skip_interrupt_label; __ AddToInterruptBudgetAndJumpIfNotExceeded(weight, &skip_interrupt_label); { __ masm()->SmiTag(params_size); __ Push(params_size, kInterpreterAccumulatorRegister); __ LoadContext(kContextRegister); __ LoadFunction(kJSFunctionRegister); __ Push(kJSFunctionRegister); __ CallRuntime(Runtime::kBytecodeBudgetInterruptFromBytecode, 1); __ Pop(kInterpreterAccumulatorRegister, params_size); __ masm()->SmiUntag(params_size); } __ Bind(&skip_interrupt_label); } BaselineAssembler::ScratchRegisterScope temps(&basm); Register actual_params_size = temps.AcquireScratch(); // Compute the size of the actual parameters + receiver (in bytes). __ Move(actual_params_size, MemOperand(fp, StandardFrameConstants::kArgCOffset)); // If actual is bigger than formal, then we should use it to free up the stack // arguments. Label corrected_args_count; __ JumpIf(Condition::kGreaterThanEqual, params_size, Operand(actual_params_size), &corrected_args_count); __ masm()->mov(params_size, actual_params_size); __ Bind(&corrected_args_count); // Leave the frame (also dropping the register file). __ masm()->LeaveFrame(StackFrame::BASELINE); // Drop receiver + arguments. __ masm()->add(params_size, params_size, Operand(1)); // Include the receiver. __ masm()->Drop(params_size); __ masm()->Ret(); } #undef __ } // namespace baseline } // namespace internal } // namespace v8 #endif // V8_BASELINE_ARM_BASELINE_ASSEMBLER_ARM_INL_H_