%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµùÕ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream
// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/overflowing-math.h" #include "src/codegen/assembler-inl.h" #include "src/codegen/callable.h" #include "src/codegen/ia32/assembler-ia32.h" #include "src/codegen/ia32/register-ia32.h" #include "src/codegen/macro-assembler.h" #include "src/codegen/optimized-compilation-info.h" #include "src/compiler/backend/code-generator-impl.h" #include "src/compiler/backend/code-generator.h" #include "src/compiler/backend/gap-resolver.h" #include "src/compiler/node-matchers.h" #include "src/compiler/osr.h" #include "src/execution/frame-constants.h" #include "src/execution/frames.h" #include "src/heap/memory-chunk.h" #include "src/objects/smi.h" #if V8_ENABLE_WEBASSEMBLY #include "src/wasm/wasm-code-manager.h" #include "src/wasm/wasm-objects.h" #endif // V8_ENABLE_WEBASSEMBLY namespace v8 { namespace internal { namespace compiler { #define __ tasm()-> #define kScratchDoubleReg xmm0 // Adds IA-32 specific methods for decoding operands. class IA32OperandConverter : public InstructionOperandConverter { public: IA32OperandConverter(CodeGenerator* gen, Instruction* instr) : InstructionOperandConverter(gen, instr) {} Operand InputOperand(size_t index, int extra = 0) { return ToOperand(instr_->InputAt(index), extra); } Immediate InputImmediate(size_t index) { return ToImmediate(instr_->InputAt(index)); } Operand OutputOperand() { return ToOperand(instr_->Output()); } Operand ToOperand(InstructionOperand* op, int extra = 0) { if (op->IsRegister()) { DCHECK_EQ(0, extra); return Operand(ToRegister(op)); } else if (op->IsFPRegister()) { DCHECK_EQ(0, extra); return Operand(ToDoubleRegister(op)); } DCHECK(op->IsStackSlot() || op->IsFPStackSlot()); return SlotToOperand(AllocatedOperand::cast(op)->index(), extra); } Operand SlotToOperand(int slot, int extra = 0) { FrameOffset offset = frame_access_state()->GetFrameOffset(slot); return Operand(offset.from_stack_pointer() ? esp : ebp, offset.offset() + extra); } Immediate ToImmediate(InstructionOperand* operand) { Constant constant = ToConstant(operand); #if V8_ENABLE_WEBASSEMBLY if (constant.type() == Constant::kInt32 && RelocInfo::IsWasmReference(constant.rmode())) { return Immediate(static_cast<Address>(constant.ToInt32()), constant.rmode()); } #endif // V8_ENABLE_WEBASSEMBLY switch (constant.type()) { case Constant::kInt32: return Immediate(constant.ToInt32()); case Constant::kFloat32: return Immediate::EmbeddedNumber(constant.ToFloat32()); case Constant::kFloat64: return Immediate::EmbeddedNumber(constant.ToFloat64().value()); case Constant::kExternalReference: return Immediate(constant.ToExternalReference()); case Constant::kHeapObject: return Immediate(constant.ToHeapObject()); case Constant::kCompressedHeapObject: break; case Constant::kDelayedStringConstant: return Immediate::EmbeddedStringConstant( constant.ToDelayedStringConstant()); case Constant::kInt64: break; case Constant::kRpoNumber: return Immediate::CodeRelativeOffset(ToLabel(operand)); } UNREACHABLE(); } static size_t NextOffset(size_t* offset) { size_t i = *offset; (*offset)++; return i; } static ScaleFactor ScaleFor(AddressingMode one, AddressingMode mode) { STATIC_ASSERT(0 == static_cast<int>(times_1)); STATIC_ASSERT(1 == static_cast<int>(times_2)); STATIC_ASSERT(2 == static_cast<int>(times_4)); STATIC_ASSERT(3 == static_cast<int>(times_8)); int scale = static_cast<int>(mode - one); DCHECK(scale >= 0 && scale < 4); return static_cast<ScaleFactor>(scale); } Operand MemoryOperand(size_t* offset) { AddressingMode mode = AddressingModeField::decode(instr_->opcode()); switch (mode) { case kMode_MR: { Register base = InputRegister(NextOffset(offset)); int32_t disp = 0; return Operand(base, disp); } case kMode_MRI: { Register base = InputRegister(NextOffset(offset)); Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset))); return Operand(base, ctant.ToInt32(), ctant.rmode()); } case kMode_MR1: case kMode_MR2: case kMode_MR4: case kMode_MR8: { Register base = InputRegister(NextOffset(offset)); Register index = InputRegister(NextOffset(offset)); ScaleFactor scale = ScaleFor(kMode_MR1, mode); int32_t disp = 0; return Operand(base, index, scale, disp); } case kMode_MR1I: case kMode_MR2I: case kMode_MR4I: case kMode_MR8I: { Register base = InputRegister(NextOffset(offset)); Register index = InputRegister(NextOffset(offset)); ScaleFactor scale = ScaleFor(kMode_MR1I, mode); Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset))); return Operand(base, index, scale, ctant.ToInt32(), ctant.rmode()); } case kMode_M1: case kMode_M2: case kMode_M4: case kMode_M8: { Register index = InputRegister(NextOffset(offset)); ScaleFactor scale = ScaleFor(kMode_M1, mode); int32_t disp = 0; return Operand(index, scale, disp); } case kMode_M1I: case kMode_M2I: case kMode_M4I: case kMode_M8I: { Register index = InputRegister(NextOffset(offset)); ScaleFactor scale = ScaleFor(kMode_M1I, mode); Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset))); return Operand(index, scale, ctant.ToInt32(), ctant.rmode()); } case kMode_MI: { Constant ctant = ToConstant(instr_->InputAt(NextOffset(offset))); return Operand(ctant.ToInt32(), ctant.rmode()); } case kMode_Root: { Register base = kRootRegister; int32_t disp = InputInt32(NextOffset(offset)); return Operand(base, disp); } case kMode_None: UNREACHABLE(); } UNREACHABLE(); } Operand MemoryOperand(size_t first_input = 0) { return MemoryOperand(&first_input); } Operand NextMemoryOperand(size_t offset = 0) { AddressingMode mode = AddressingModeField::decode(instr_->opcode()); Register base = InputRegister(NextOffset(&offset)); const int32_t disp = 4; if (mode == kMode_MR1) { Register index = InputRegister(NextOffset(&offset)); ScaleFactor scale = ScaleFor(kMode_MR1, kMode_MR1); return Operand(base, index, scale, disp); } else if (mode == kMode_MRI) { Constant ctant = ToConstant(instr_->InputAt(NextOffset(&offset))); return Operand(base, ctant.ToInt32() + disp, ctant.rmode()); } else { UNREACHABLE(); } } void MoveInstructionOperandToRegister(Register destination, InstructionOperand* op) { if (op->IsImmediate() || op->IsConstant()) { gen_->tasm()->mov(destination, ToImmediate(op)); } else if (op->IsRegister()) { gen_->tasm()->Move(destination, ToRegister(op)); } else { gen_->tasm()->mov(destination, ToOperand(op)); } } }; namespace { bool HasAddressingMode(Instruction* instr) { return instr->addressing_mode() != kMode_None; } bool HasImmediateInput(Instruction* instr, size_t index) { return instr->InputAt(index)->IsImmediate(); } bool HasRegisterInput(Instruction* instr, size_t index) { return instr->InputAt(index)->IsRegister(); } class OutOfLineLoadFloat32NaN final : public OutOfLineCode { public: OutOfLineLoadFloat32NaN(CodeGenerator* gen, XMMRegister result) : OutOfLineCode(gen), result_(result) {} void Generate() final { __ xorps(result_, result_); __ divss(result_, result_); } private: XMMRegister const result_; }; class OutOfLineLoadFloat64NaN final : public OutOfLineCode { public: OutOfLineLoadFloat64NaN(CodeGenerator* gen, XMMRegister result) : OutOfLineCode(gen), result_(result) {} void Generate() final { __ xorpd(result_, result_); __ divsd(result_, result_); } private: XMMRegister const result_; }; class OutOfLineTruncateDoubleToI final : public OutOfLineCode { public: OutOfLineTruncateDoubleToI(CodeGenerator* gen, Register result, XMMRegister input, StubCallMode stub_mode) : OutOfLineCode(gen), result_(result), input_(input), #if V8_ENABLE_WEBASSEMBLY stub_mode_(stub_mode), #endif // V8_ENABLE_WEBASSEMBLY isolate_(gen->isolate()), zone_(gen->zone()) { } void Generate() final { __ AllocateStackSpace(kDoubleSize); __ Movsd(MemOperand(esp, 0), input_); #if V8_ENABLE_WEBASSEMBLY if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) { // A direct call to a wasm runtime stub defined in this module. // Just encode the stub index. This will be patched when the code // is added to the native module and copied into wasm code space. __ wasm_call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL); #else // For balance. if (false) { #endif // V8_ENABLE_WEBASSEMBLY } else if (tasm()->options().inline_offheap_trampolines) { __ CallBuiltin(Builtin::kDoubleToI); } else { __ Call(BUILTIN_CODE(isolate_, DoubleToI), RelocInfo::CODE_TARGET); } __ mov(result_, MemOperand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); } private: Register const result_; XMMRegister const input_; #if V8_ENABLE_WEBASSEMBLY StubCallMode stub_mode_; #endif // V8_ENABLE_WEBASSEMBLY Isolate* isolate_; Zone* zone_; }; class OutOfLineRecordWrite final : public OutOfLineCode { public: OutOfLineRecordWrite(CodeGenerator* gen, Register object, Operand operand, Register value, Register scratch0, Register scratch1, RecordWriteMode mode, StubCallMode stub_mode) : OutOfLineCode(gen), object_(object), operand_(operand), value_(value), scratch0_(scratch0), scratch1_(scratch1), mode_(mode), #if V8_ENABLE_WEBASSEMBLY stub_mode_(stub_mode), #endif // V8_ENABLE_WEBASSEMBLY zone_(gen->zone()) { DCHECK(!AreAliased(object, scratch0, scratch1)); DCHECK(!AreAliased(value, scratch0, scratch1)); } void Generate() final { __ CheckPageFlag(value_, scratch0_, MemoryChunk::kPointersToHereAreInterestingMask, zero, exit()); __ lea(scratch1_, operand_); RememberedSetAction const remembered_set_action = mode_ > RecordWriteMode::kValueIsMap ? RememberedSetAction::kEmit : RememberedSetAction::kOmit; SaveFPRegsMode const save_fp_mode = frame()->DidAllocateDoubleRegisters() ? SaveFPRegsMode::kSave : SaveFPRegsMode::kIgnore; if (mode_ == RecordWriteMode::kValueIsEphemeronKey) { __ CallEphemeronKeyBarrier(object_, scratch1_, save_fp_mode); #if V8_ENABLE_WEBASSEMBLY } else if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) { // A direct call to a wasm runtime stub defined in this module. // Just encode the stub index. This will be patched when the code // is added to the native module and copied into wasm code space. __ CallRecordWriteStubSaveRegisters(object_, scratch1_, remembered_set_action, save_fp_mode, StubCallMode::kCallWasmRuntimeStub); } else { #endif // V8_ENABLE_WEBASSEMBLY __ CallRecordWriteStubSaveRegisters(object_, scratch1_, remembered_set_action, save_fp_mode); } } private: Register const object_; Operand const operand_; Register const value_; Register const scratch0_; Register const scratch1_; RecordWriteMode const mode_; #if V8_ENABLE_WEBASSEMBLY StubCallMode const stub_mode_; #endif // V8_ENABLE_WEBASSEMBLY Zone* zone_; }; } // namespace #define ASSEMBLE_COMPARE(asm_instr) \ do { \ if (HasAddressingMode(instr)) { \ size_t index = 0; \ Operand left = i.MemoryOperand(&index); \ if (HasImmediateInput(instr, index)) { \ __ asm_instr(left, i.InputImmediate(index)); \ } else { \ __ asm_instr(left, i.InputRegister(index)); \ } \ } else { \ if (HasImmediateInput(instr, 1)) { \ if (HasRegisterInput(instr, 0)) { \ __ asm_instr(i.InputRegister(0), i.InputImmediate(1)); \ } else { \ __ asm_instr(i.InputOperand(0), i.InputImmediate(1)); \ } \ } else { \ if (HasRegisterInput(instr, 1)) { \ __ asm_instr(i.InputRegister(0), i.InputRegister(1)); \ } else { \ __ asm_instr(i.InputRegister(0), i.InputOperand(1)); \ } \ } \ } \ } while (0) #define ASSEMBLE_IEEE754_BINOP(name) \ do { \ /* Pass two doubles as arguments on the stack. */ \ __ PrepareCallCFunction(4, eax); \ __ movsd(Operand(esp, 0 * kDoubleSize), i.InputDoubleRegister(0)); \ __ movsd(Operand(esp, 1 * kDoubleSize), i.InputDoubleRegister(1)); \ __ CallCFunction(ExternalReference::ieee754_##name##_function(), 4); \ /* Return value is in st(0) on ia32. */ \ /* Store it into the result register. */ \ __ AllocateStackSpace(kDoubleSize); \ __ fstp_d(Operand(esp, 0)); \ __ movsd(i.OutputDoubleRegister(), Operand(esp, 0)); \ __ add(esp, Immediate(kDoubleSize)); \ } while (false) #define ASSEMBLE_IEEE754_UNOP(name) \ do { \ /* Pass one double as argument on the stack. */ \ __ PrepareCallCFunction(2, eax); \ __ movsd(Operand(esp, 0 * kDoubleSize), i.InputDoubleRegister(0)); \ __ CallCFunction(ExternalReference::ieee754_##name##_function(), 2); \ /* Return value is in st(0) on ia32. */ \ /* Store it into the result register. */ \ __ AllocateStackSpace(kDoubleSize); \ __ fstp_d(Operand(esp, 0)); \ __ movsd(i.OutputDoubleRegister(), Operand(esp, 0)); \ __ add(esp, Immediate(kDoubleSize)); \ } while (false) #define ASSEMBLE_BINOP(asm_instr) \ do { \ if (HasAddressingMode(instr)) { \ size_t index = 1; \ Operand right = i.MemoryOperand(&index); \ __ asm_instr(i.InputRegister(0), right); \ } else { \ if (HasImmediateInput(instr, 1)) { \ __ asm_instr(i.InputOperand(0), i.InputImmediate(1)); \ } else { \ __ asm_instr(i.InputRegister(0), i.InputOperand(1)); \ } \ } \ } while (0) #define ASSEMBLE_ATOMIC_BINOP(bin_inst, mov_inst, cmpxchg_inst) \ do { \ Label binop; \ __ bind(&binop); \ __ mov_inst(eax, i.MemoryOperand(1)); \ __ Move(i.TempRegister(0), eax); \ __ bin_inst(i.TempRegister(0), i.InputRegister(0)); \ __ lock(); \ __ cmpxchg_inst(i.MemoryOperand(1), i.TempRegister(0)); \ __ j(not_equal, &binop); \ } while (false) #define ASSEMBLE_I64ATOMIC_BINOP(instr1, instr2) \ do { \ Label binop; \ __ bind(&binop); \ __ mov(eax, i.MemoryOperand(2)); \ __ mov(edx, i.NextMemoryOperand(2)); \ __ push(ebx); \ frame_access_state()->IncreaseSPDelta(1); \ i.MoveInstructionOperandToRegister(ebx, instr->InputAt(0)); \ __ push(i.InputRegister(1)); \ __ instr1(ebx, eax); \ __ instr2(i.InputRegister(1), edx); \ __ lock(); \ __ cmpxchg8b(i.MemoryOperand(2)); \ __ pop(i.InputRegister(1)); \ __ pop(ebx); \ frame_access_state()->IncreaseSPDelta(-1); \ __ j(not_equal, &binop); \ } while (false); #define ASSEMBLE_MOVX(mov_instr) \ do { \ if (HasAddressingMode(instr)) { \ __ mov_instr(i.OutputRegister(), i.MemoryOperand()); \ } else if (HasRegisterInput(instr, 0)) { \ __ mov_instr(i.OutputRegister(), i.InputRegister(0)); \ } else { \ __ mov_instr(i.OutputRegister(), i.InputOperand(0)); \ } \ } while (0) #define ASSEMBLE_SIMD_PUNPCK_SHUFFLE(opcode) \ do { \ XMMRegister src0 = i.InputSimd128Register(0); \ Operand src1 = i.InputOperand(instr->InputCount() == 2 ? 1 : 0); \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope avx_scope(tasm(), AVX); \ __ v##opcode(i.OutputSimd128Register(), src0, src1); \ } else { \ DCHECK_EQ(i.OutputSimd128Register(), src0); \ __ opcode(i.OutputSimd128Register(), src1); \ } \ } while (false) #define ASSEMBLE_SIMD_IMM_SHUFFLE(opcode, SSELevel, imm) \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope avx_scope(tasm(), AVX); \ __ v##opcode(i.OutputSimd128Register(), i.InputSimd128Register(0), \ i.InputOperand(1), imm); \ } else { \ CpuFeatureScope sse_scope(tasm(), SSELevel); \ DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); \ __ opcode(i.OutputSimd128Register(), i.InputOperand(1), imm); \ } #define ASSEMBLE_SIMD_ALL_TRUE(opcode) \ do { \ Register dst = i.OutputRegister(); \ Operand src = i.InputOperand(0); \ Register tmp = i.TempRegister(0); \ XMMRegister tmp_simd = i.TempSimd128Register(1); \ __ mov(tmp, Immediate(1)); \ __ xor_(dst, dst); \ __ Pxor(tmp_simd, tmp_simd); \ __ opcode(tmp_simd, src); \ __ Ptest(tmp_simd, tmp_simd); \ __ cmov(zero, dst, tmp); \ } while (false) #define ASSEMBLE_SIMD_SHIFT(opcode, width) \ do { \ XMMRegister dst = i.OutputSimd128Register(); \ DCHECK_EQ(dst, i.InputSimd128Register(0)); \ if (HasImmediateInput(instr, 1)) { \ __ opcode(dst, dst, byte{i.InputInt##width(1)}); \ } else { \ XMMRegister tmp = i.TempSimd128Register(0); \ Register tmp_shift = i.TempRegister(1); \ constexpr int mask = (1 << width) - 1; \ __ mov(tmp_shift, i.InputRegister(1)); \ __ and_(tmp_shift, Immediate(mask)); \ __ Movd(tmp, tmp_shift); \ __ opcode(dst, dst, tmp); \ } \ } while (false) #define ASSEMBLE_SIMD_PINSR(OPCODE, CPU_FEATURE) \ do { \ XMMRegister dst = i.OutputSimd128Register(); \ XMMRegister src = i.InputSimd128Register(0); \ int8_t laneidx = i.InputInt8(1); \ if (HasAddressingMode(instr)) { \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope avx_scope(tasm(), AVX); \ __ v##OPCODE(dst, src, i.MemoryOperand(2), laneidx); \ } else { \ DCHECK_EQ(dst, src); \ CpuFeatureScope sse_scope(tasm(), CPU_FEATURE); \ __ OPCODE(dst, i.MemoryOperand(2), laneidx); \ } \ } else { \ if (CpuFeatures::IsSupported(AVX)) { \ CpuFeatureScope avx_scope(tasm(), AVX); \ __ v##OPCODE(dst, src, i.InputOperand(2), laneidx); \ } else { \ DCHECK_EQ(dst, src); \ CpuFeatureScope sse_scope(tasm(), CPU_FEATURE); \ __ OPCODE(dst, i.InputOperand(2), laneidx); \ } \ } \ } while (false) void CodeGenerator::AssembleDeconstructFrame() { __ mov(esp, ebp); __ pop(ebp); } void CodeGenerator::AssemblePrepareTailCall() { if (frame_access_state()->has_frame()) { __ mov(ebp, MemOperand(ebp, 0)); } frame_access_state()->SetFrameAccessToSP(); } namespace { void AdjustStackPointerForTailCall(TurboAssembler* tasm, FrameAccessState* state, int new_slot_above_sp, bool allow_shrinkage = true) { int current_sp_offset = state->GetSPToFPSlotCount() + StandardFrameConstants::kFixedSlotCountAboveFp; int stack_slot_delta = new_slot_above_sp - current_sp_offset; if (stack_slot_delta > 0) { tasm->AllocateStackSpace(stack_slot_delta * kSystemPointerSize); state->IncreaseSPDelta(stack_slot_delta); } else if (allow_shrinkage && stack_slot_delta < 0) { tasm->add(esp, Immediate(-stack_slot_delta * kSystemPointerSize)); state->IncreaseSPDelta(stack_slot_delta); } } #ifdef DEBUG bool VerifyOutputOfAtomicPairInstr(IA32OperandConverter* converter, const Instruction* instr) { if (instr->OutputCount() == 2) { return (converter->OutputRegister(0) == eax && converter->OutputRegister(1) == edx); } if (instr->OutputCount() == 1) { return (converter->OutputRegister(0) == eax && converter->TempRegister(0) == edx) || (converter->OutputRegister(0) == edx && converter->TempRegister(0) == eax); } DCHECK_EQ(instr->OutputCount(), 0); return (converter->TempRegister(0) == eax && converter->TempRegister(1) == edx); } #endif } // namespace void CodeGenerator::AssembleTailCallBeforeGap(Instruction* instr, int first_unused_slot_offset) { CodeGenerator::PushTypeFlags flags(kImmediatePush | kScalarPush); ZoneVector<MoveOperands*> pushes(zone()); GetPushCompatibleMoves(instr, flags, &pushes); if (!pushes.empty() && (LocationOperand::cast(pushes.back()->destination()).index() + 1 == first_unused_slot_offset)) { IA32OperandConverter g(this, instr); for (auto move : pushes) { LocationOperand destination_location( LocationOperand::cast(move->destination())); InstructionOperand source(move->source()); AdjustStackPointerForTailCall(tasm(), frame_access_state(), destination_location.index()); if (source.IsStackSlot()) { LocationOperand source_location(LocationOperand::cast(source)); __ push(g.SlotToOperand(source_location.index())); } else if (source.IsRegister()) { LocationOperand source_location(LocationOperand::cast(source)); __ push(source_location.GetRegister()); } else if (source.IsImmediate()) { __ Push(Immediate(ImmediateOperand::cast(source).inline_int32_value())); } else { // Pushes of non-scalar data types is not supported. UNIMPLEMENTED(); } frame_access_state()->IncreaseSPDelta(1); move->Eliminate(); } } AdjustStackPointerForTailCall(tasm(), frame_access_state(), first_unused_slot_offset, false); } void CodeGenerator::AssembleTailCallAfterGap(Instruction* instr, int first_unused_slot_offset) { AdjustStackPointerForTailCall(tasm(), frame_access_state(), first_unused_slot_offset); } // Check that {kJavaScriptCallCodeStartRegister} is correct. void CodeGenerator::AssembleCodeStartRegisterCheck() { __ push(eax); // Push eax so we can use it as a scratch register. __ ComputeCodeStartAddress(eax); __ cmp(eax, kJavaScriptCallCodeStartRegister); __ Assert(equal, AbortReason::kWrongFunctionCodeStart); __ pop(eax); // Restore eax. } // Check if the code object is marked for deoptimization. If it is, then it // jumps to the CompileLazyDeoptimizedCode builtin. In order to do this we need // to: // 1. read from memory the word that contains that bit, which can be found in // the flags in the referenced {CodeDataContainer} object; // 2. test kMarkedForDeoptimizationBit in those flags; and // 3. if it is not zero then it jumps to the builtin. void CodeGenerator::BailoutIfDeoptimized() { int offset = Code::kCodeDataContainerOffset - Code::kHeaderSize; __ push(eax); // Push eax so we can use it as a scratch register. __ mov(eax, Operand(kJavaScriptCallCodeStartRegister, offset)); __ test(FieldOperand(eax, CodeDataContainer::kKindSpecificFlagsOffset), Immediate(1 << Code::kMarkedForDeoptimizationBit)); __ pop(eax); // Restore eax. Label skip; __ j(zero, &skip, Label::kNear); __ Jump(BUILTIN_CODE(isolate(), CompileLazyDeoptimizedCode), RelocInfo::CODE_TARGET); __ bind(&skip); } // Assembles an instruction after register allocation, producing machine code. CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction( Instruction* instr) { IA32OperandConverter i(this, instr); InstructionCode opcode = instr->opcode(); ArchOpcode arch_opcode = ArchOpcodeField::decode(opcode); switch (arch_opcode) { case kArchCallCodeObject: { InstructionOperand* op = instr->InputAt(0); if (op->IsImmediate()) { Handle<Code> code = i.InputCode(0); __ Call(code, RelocInfo::CODE_TARGET); } else { Register reg = i.InputRegister(0); DCHECK_IMPLIES( instr->HasCallDescriptorFlag(CallDescriptor::kFixedTargetRegister), reg == kJavaScriptCallCodeStartRegister); __ LoadCodeObjectEntry(reg, reg); __ call(reg); } RecordCallPosition(instr); frame_access_state()->ClearSPDelta(); break; } case kArchCallBuiltinPointer: { DCHECK(!HasImmediateInput(instr, 0)); Register builtin_index = i.InputRegister(0); __ CallBuiltinByIndex(builtin_index); RecordCallPosition(instr); frame_access_state()->ClearSPDelta(); break; } #if V8_ENABLE_WEBASSEMBLY case kArchCallWasmFunction: { if (HasImmediateInput(instr, 0)) { Constant constant = i.ToConstant(instr->InputAt(0)); Address wasm_code = static_cast<Address>(constant.ToInt32()); if (DetermineStubCallMode() == StubCallMode::kCallWasmRuntimeStub) { __ wasm_call(wasm_code, constant.rmode()); } else { __ call(wasm_code, constant.rmode()); } } else { __ call(i.InputRegister(0)); } RecordCallPosition(instr); frame_access_state()->ClearSPDelta(); break; } case kArchTailCallWasm: { if (HasImmediateInput(instr, 0)) { Constant constant = i.ToConstant(instr->InputAt(0)); Address wasm_code = static_cast<Address>(constant.ToInt32()); __ jmp(wasm_code, constant.rmode()); } else { __ jmp(i.InputRegister(0)); } frame_access_state()->ClearSPDelta(); frame_access_state()->SetFrameAccessToDefault(); break; } #endif // V8_ENABLE_WEBASSEMBLY case kArchTailCallCodeObject: { if (HasImmediateInput(instr, 0)) { Handle<Code> code = i.InputCode(0); __ Jump(code, RelocInfo::CODE_TARGET); } else { Register reg = i.InputRegister(0); DCHECK_IMPLIES( instr->HasCallDescriptorFlag(CallDescriptor::kFixedTargetRegister), reg == kJavaScriptCallCodeStartRegister); __ LoadCodeObjectEntry(reg, reg); __ jmp(reg); } frame_access_state()->ClearSPDelta(); frame_access_state()->SetFrameAccessToDefault(); break; } case kArchTailCallAddress: { CHECK(!HasImmediateInput(instr, 0)); Register reg = i.InputRegister(0); DCHECK_IMPLIES( instr->HasCallDescriptorFlag(CallDescriptor::kFixedTargetRegister), reg == kJavaScriptCallCodeStartRegister); __ jmp(reg); frame_access_state()->ClearSPDelta(); frame_access_state()->SetFrameAccessToDefault(); break; } case kArchCallJSFunction: { Register func = i.InputRegister(0); if (FLAG_debug_code) { // Check the function's context matches the context argument. __ cmp(esi, FieldOperand(func, JSFunction::kContextOffset)); __ Assert(equal, AbortReason::kWrongFunctionContext); } static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ mov(ecx, FieldOperand(func, JSFunction::kCodeOffset)); __ CallCodeObject(ecx); RecordCallPosition(instr); frame_access_state()->ClearSPDelta(); break; } case kArchPrepareCallCFunction: { // Frame alignment requires using FP-relative frame addressing. frame_access_state()->SetFrameAccessToFP(); int const num_parameters = MiscField::decode(instr->opcode()); __ PrepareCallCFunction(num_parameters, i.TempRegister(0)); break; } case kArchSaveCallerRegisters: { fp_mode_ = static_cast<SaveFPRegsMode>(MiscField::decode(instr->opcode())); DCHECK(fp_mode_ == SaveFPRegsMode::kIgnore || fp_mode_ == SaveFPRegsMode::kSave); // kReturnRegister0 should have been saved before entering the stub. int bytes = __ PushCallerSaved(fp_mode_, kReturnRegister0); DCHECK(IsAligned(bytes, kSystemPointerSize)); DCHECK_EQ(0, frame_access_state()->sp_delta()); frame_access_state()->IncreaseSPDelta(bytes / kSystemPointerSize); DCHECK(!caller_registers_saved_); caller_registers_saved_ = true; break; } case kArchRestoreCallerRegisters: { DCHECK(fp_mode_ == static_cast<SaveFPRegsMode>(MiscField::decode(instr->opcode()))); DCHECK(fp_mode_ == SaveFPRegsMode::kIgnore || fp_mode_ == SaveFPRegsMode::kSave); // Don't overwrite the returned value. int bytes = __ PopCallerSaved(fp_mode_, kReturnRegister0); frame_access_state()->IncreaseSPDelta(-(bytes / kSystemPointerSize)); DCHECK_EQ(0, frame_access_state()->sp_delta()); DCHECK(caller_registers_saved_); caller_registers_saved_ = false; break; } case kArchPrepareTailCall: AssemblePrepareTailCall(); break; case kArchCallCFunction: { int const num_parameters = MiscField::decode(instr->opcode()); Label return_location; #if V8_ENABLE_WEBASSEMBLY if (linkage()->GetIncomingDescriptor()->IsWasmCapiFunction()) { // Put the return address in a stack slot. Register scratch = eax; __ push(scratch); __ PushPC(); int pc = __ pc_offset(); __ pop(scratch); __ sub(scratch, Immediate(pc + Code::kHeaderSize - kHeapObjectTag)); __ add(scratch, Immediate::CodeRelativeOffset(&return_location)); __ mov(MemOperand(ebp, WasmExitFrameConstants::kCallingPCOffset), scratch); __ pop(scratch); } #endif // V8_ENABLE_WEBASSEMBLY if (HasImmediateInput(instr, 0)) { ExternalReference ref = i.InputExternalReference(0); __ CallCFunction(ref, num_parameters); } else { Register func = i.InputRegister(0); __ CallCFunction(func, num_parameters); } __ bind(&return_location); #if V8_ENABLE_WEBASSEMBLY if (linkage()->GetIncomingDescriptor()->IsWasmCapiFunction()) { RecordSafepoint(instr->reference_map()); } #endif // V8_ENABLE_WEBASSEMBLY frame_access_state()->SetFrameAccessToDefault(); // Ideally, we should decrement SP delta to match the change of stack // pointer in CallCFunction. However, for certain architectures (e.g. // ARM), there may be more strict alignment requirement, causing old SP // to be saved on the stack. In those cases, we can not calculate the SP // delta statically. frame_access_state()->ClearSPDelta(); if (caller_registers_saved_) { // Need to re-sync SP delta introduced in kArchSaveCallerRegisters. // Here, we assume the sequence to be: // kArchSaveCallerRegisters; // kArchCallCFunction; // kArchRestoreCallerRegisters; int bytes = __ RequiredStackSizeForCallerSaved(fp_mode_, kReturnRegister0); frame_access_state()->IncreaseSPDelta(bytes / kSystemPointerSize); } break; } case kArchJmp: AssembleArchJump(i.InputRpo(0)); break; case kArchBinarySearchSwitch: AssembleArchBinarySearchSwitch(instr); break; case kArchTableSwitch: AssembleArchTableSwitch(instr); break; case kArchComment: __ RecordComment(reinterpret_cast<const char*>(i.InputInt32(0))); break; case kArchAbortCSAAssert: DCHECK(i.InputRegister(0) == edx); { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(tasm(), StackFrame::NONE); __ Call(isolate()->builtins()->code_handle(Builtin::kAbortCSAAssert), RelocInfo::CODE_TARGET); } __ int3(); break; case kArchDebugBreak: __ DebugBreak(); break; case kArchNop: case kArchThrowTerminator: // don't emit code for nops. break; case kArchDeoptimize: { DeoptimizationExit* exit = BuildTranslation(instr, -1, 0, 0, OutputFrameStateCombine::Ignore()); __ jmp(exit->label()); break; } case kArchRet: AssembleReturn(instr->InputAt(0)); break; case kArchFramePointer: __ mov(i.OutputRegister(), ebp); break; case kArchParentFramePointer: if (frame_access_state()->has_frame()) { __ mov(i.OutputRegister(), Operand(ebp, 0)); } else { __ mov(i.OutputRegister(), ebp); } break; case kArchStackPointerGreaterThan: { // Potentially apply an offset to the current stack pointer before the // comparison to consider the size difference of an optimized frame versus // the contained unoptimized frames. Register lhs_register = esp; uint32_t offset; if (ShouldApplyOffsetToStackCheck(instr, &offset)) { lhs_register = i.TempRegister(0); __ lea(lhs_register, Operand(esp, -1 * static_cast<int32_t>(offset))); } constexpr size_t kValueIndex = 0; if (HasAddressingMode(instr)) { __ cmp(lhs_register, i.MemoryOperand(kValueIndex)); } else { __ cmp(lhs_register, i.InputRegister(kValueIndex)); } break; } case kArchStackCheckOffset: __ Move(i.OutputRegister(), Smi::FromInt(GetStackCheckOffset())); break; case kArchTruncateDoubleToI: { auto result = i.OutputRegister(); auto input = i.InputDoubleRegister(0); auto ool = zone()->New<OutOfLineTruncateDoubleToI>( this, result, input, DetermineStubCallMode()); __ cvttsd2si(result, Operand(input)); __ cmp(result, 1); __ j(overflow, ool->entry()); __ bind(ool->exit()); break; } case kArchStoreWithWriteBarrier: { RecordWriteMode mode = static_cast<RecordWriteMode>(MiscField::decode(instr->opcode())); Register object = i.InputRegister(0); size_t index = 0; Operand operand = i.MemoryOperand(&index); Register value = i.InputRegister(index); Register scratch0 = i.TempRegister(0); Register scratch1 = i.TempRegister(1); auto ool = zone()->New<OutOfLineRecordWrite>(this, object, operand, value, scratch0, scratch1, mode, DetermineStubCallMode()); __ mov(operand, value); if (mode > RecordWriteMode::kValueIsPointer) { __ JumpIfSmi(value, ool->exit()); } __ CheckPageFlag(object, scratch0, MemoryChunk::kPointersFromHereAreInterestingMask, not_zero, ool->entry()); __ bind(ool->exit()); break; } case kArchStackSlot: { FrameOffset offset = frame_access_state()->GetFrameOffset(i.InputInt32(0)); Register base = offset.from_stack_pointer() ? esp : ebp; __ lea(i.OutputRegister(), Operand(base, offset.offset())); break; } case kIeee754Float64Acos: ASSEMBLE_IEEE754_UNOP(acos); break; case kIeee754Float64Acosh: ASSEMBLE_IEEE754_UNOP(acosh); break; case kIeee754Float64Asin: ASSEMBLE_IEEE754_UNOP(asin); break; case kIeee754Float64Asinh: ASSEMBLE_IEEE754_UNOP(asinh); break; case kIeee754Float64Atan: ASSEMBLE_IEEE754_UNOP(atan); break; case kIeee754Float64Atanh: ASSEMBLE_IEEE754_UNOP(atanh); break; case kIeee754Float64Atan2: ASSEMBLE_IEEE754_BINOP(atan2); break; case kIeee754Float64Cbrt: ASSEMBLE_IEEE754_UNOP(cbrt); break; case kIeee754Float64Cos: ASSEMBLE_IEEE754_UNOP(cos); break; case kIeee754Float64Cosh: ASSEMBLE_IEEE754_UNOP(cosh); break; case kIeee754Float64Expm1: ASSEMBLE_IEEE754_UNOP(expm1); break; case kIeee754Float64Exp: ASSEMBLE_IEEE754_UNOP(exp); break; case kIeee754Float64Log: ASSEMBLE_IEEE754_UNOP(log); break; case kIeee754Float64Log1p: ASSEMBLE_IEEE754_UNOP(log1p); break; case kIeee754Float64Log2: ASSEMBLE_IEEE754_UNOP(log2); break; case kIeee754Float64Log10: ASSEMBLE_IEEE754_UNOP(log10); break; case kIeee754Float64Pow: ASSEMBLE_IEEE754_BINOP(pow); break; case kIeee754Float64Sin: ASSEMBLE_IEEE754_UNOP(sin); break; case kIeee754Float64Sinh: ASSEMBLE_IEEE754_UNOP(sinh); break; case kIeee754Float64Tan: ASSEMBLE_IEEE754_UNOP(tan); break; case kIeee754Float64Tanh: ASSEMBLE_IEEE754_UNOP(tanh); break; case kIA32Add: ASSEMBLE_BINOP(add); break; case kIA32And: ASSEMBLE_BINOP(and_); break; case kIA32Cmp: ASSEMBLE_COMPARE(cmp); break; case kIA32Cmp16: ASSEMBLE_COMPARE(cmpw); break; case kIA32Cmp8: ASSEMBLE_COMPARE(cmpb); break; case kIA32Test: ASSEMBLE_COMPARE(test); break; case kIA32Test16: ASSEMBLE_COMPARE(test_w); break; case kIA32Test8: ASSEMBLE_COMPARE(test_b); break; case kIA32Imul: if (HasImmediateInput(instr, 1)) { __ imul(i.OutputRegister(), i.InputOperand(0), i.InputInt32(1)); } else { __ imul(i.OutputRegister(), i.InputOperand(1)); } break; case kIA32ImulHigh: __ imul(i.InputRegister(1)); break; case kIA32UmulHigh: __ mul(i.InputRegister(1)); break; case kIA32Idiv: __ cdq(); __ idiv(i.InputOperand(1)); break; case kIA32Udiv: __ Move(edx, Immediate(0)); __ div(i.InputOperand(1)); break; case kIA32Not: __ not_(i.OutputOperand()); break; case kIA32Neg: __ neg(i.OutputOperand()); break; case kIA32Or: ASSEMBLE_BINOP(or_); break; case kIA32Xor: ASSEMBLE_BINOP(xor_); break; case kIA32Sub: ASSEMBLE_BINOP(sub); break; case kIA32Shl: if (HasImmediateInput(instr, 1)) { __ shl(i.OutputOperand(), i.InputInt5(1)); } else { __ shl_cl(i.OutputOperand()); } break; case kIA32Shr: if (HasImmediateInput(instr, 1)) { __ shr(i.OutputOperand(), i.InputInt5(1)); } else { __ shr_cl(i.OutputOperand()); } break; case kIA32Sar: if (HasImmediateInput(instr, 1)) { __ sar(i.OutputOperand(), i.InputInt5(1)); } else { __ sar_cl(i.OutputOperand()); } break; case kIA32AddPair: { // i.OutputRegister(0) == i.InputRegister(0) ... left low word. // i.InputRegister(1) ... left high word. // i.InputRegister(2) ... right low word. // i.InputRegister(3) ... right high word. bool use_temp = false; if ((HasRegisterInput(instr, 1) && i.OutputRegister(0).code() == i.InputRegister(1).code()) || i.OutputRegister(0).code() == i.InputRegister(3).code()) { // We cannot write to the output register directly, because it would // overwrite an input for adc. We have to use the temp register. use_temp = true; __ Move(i.TempRegister(0), i.InputRegister(0)); __ add(i.TempRegister(0), i.InputRegister(2)); } else { __ add(i.OutputRegister(0), i.InputRegister(2)); } i.MoveInstructionOperandToRegister(i.OutputRegister(1), instr->InputAt(1)); __ adc(i.OutputRegister(1), Operand(i.InputRegister(3))); if (use_temp) { __ Move(i.OutputRegister(0), i.TempRegister(0)); } break; } case kIA32SubPair: { // i.OutputRegister(0) == i.InputRegister(0) ... left low word. // i.InputRegister(1) ... left high word. // i.InputRegister(2) ... right low word. // i.InputRegister(3) ... right high word. bool use_temp = false; if ((HasRegisterInput(instr, 1) && i.OutputRegister(0).code() == i.InputRegister(1).code()) || i.OutputRegister(0).code() == i.InputRegister(3).code()) { // We cannot write to the output register directly, because it would // overwrite an input for adc. We have to use the temp register. use_temp = true; __ Move(i.TempRegister(0), i.InputRegister(0)); __ sub(i.TempRegister(0), i.InputRegister(2)); } else { __ sub(i.OutputRegister(0), i.InputRegister(2)); } i.MoveInstructionOperandToRegister(i.OutputRegister(1), instr->InputAt(1)); __ sbb(i.OutputRegister(1), Operand(i.InputRegister(3))); if (use_temp) { __ Move(i.OutputRegister(0), i.TempRegister(0)); } break; } case kIA32MulPair: { __ imul(i.OutputRegister(1), i.InputOperand(0)); i.MoveInstructionOperandToRegister(i.TempRegister(0), instr->InputAt(1)); __ imul(i.TempRegister(0), i.InputOperand(2)); __ add(i.OutputRegister(1), i.TempRegister(0)); __ mov(i.OutputRegister(0), i.InputOperand(0)); // Multiplies the low words and stores them in eax and edx. __ mul(i.InputRegister(2)); __ add(i.OutputRegister(1), i.TempRegister(0)); break; } case kIA32ShlPair: if (HasImmediateInput(instr, 2)) { __ ShlPair(i.InputRegister(1), i.InputRegister(0), i.InputInt6(2)); } else { // Shift has been loaded into CL by the register allocator. __ ShlPair_cl(i.InputRegister(1), i.InputRegister(0)); } break; case kIA32ShrPair: if (HasImmediateInput(instr, 2)) { __ ShrPair(i.InputRegister(1), i.InputRegister(0), i.InputInt6(2)); } else { // Shift has been loaded into CL by the register allocator. __ ShrPair_cl(i.InputRegister(1), i.InputRegister(0)); } break; case kIA32SarPair: if (HasImmediateInput(instr, 2)) { __ SarPair(i.InputRegister(1), i.InputRegister(0), i.InputInt6(2)); } else { // Shift has been loaded into CL by the register allocator. __ SarPair_cl(i.InputRegister(1), i.InputRegister(0)); } break; case kIA32Rol: if (HasImmediateInput(instr, 1)) { __ rol(i.OutputOperand(), i.InputInt5(1)); } else { __ rol_cl(i.OutputOperand()); } break; case kIA32Ror: if (HasImmediateInput(instr, 1)) { __ ror(i.OutputOperand(), i.InputInt5(1)); } else { __ ror_cl(i.OutputOperand()); } break; case kIA32Lzcnt: __ Lzcnt(i.OutputRegister(), i.InputOperand(0)); break; case kIA32Tzcnt: __ Tzcnt(i.OutputRegister(), i.InputOperand(0)); break; case kIA32Popcnt: __ Popcnt(i.OutputRegister(), i.InputOperand(0)); break; case kIA32Bswap: __ bswap(i.OutputRegister()); break; case kIA32MFence: __ mfence(); break; case kIA32LFence: __ lfence(); break; case kSSEFloat32Cmp: __ ucomiss(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat32Add: __ addss(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat32Sub: __ subss(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat32Mul: __ mulss(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat32Div: __ divss(i.InputDoubleRegister(0), i.InputOperand(1)); // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulss depending on the result. __ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; case kSSEFloat32Sqrt: __ sqrtss(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEFloat32Abs: { // TODO(bmeurer): Use 128-bit constants. XMMRegister tmp = i.TempSimd128Register(0); __ pcmpeqd(tmp, tmp); __ psrlq(tmp, 33); __ andps(i.OutputDoubleRegister(), tmp); break; } case kSSEFloat32Neg: { // TODO(bmeurer): Use 128-bit constants. XMMRegister tmp = i.TempSimd128Register(0); __ pcmpeqd(tmp, tmp); __ psllq(tmp, 31); __ xorps(i.OutputDoubleRegister(), tmp); break; } case kSSEFloat32Round: { CpuFeatureScope sse_scope(tasm(), SSE4_1); RoundingMode const mode = static_cast<RoundingMode>(MiscField::decode(instr->opcode())); __ roundss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), mode); break; } case kSSEFloat64Cmp: __ ucomisd(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat64Add: __ addsd(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat64Sub: __ subsd(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat64Mul: __ mulsd(i.InputDoubleRegister(0), i.InputOperand(1)); break; case kSSEFloat64Div: __ divsd(i.InputDoubleRegister(0), i.InputOperand(1)); // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulsd depending on the result. __ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; case kSSEFloat32Max: { Label compare_swap, done_compare; if (instr->InputAt(1)->IsFPRegister()) { __ ucomiss(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ ucomiss(i.InputDoubleRegister(0), i.InputOperand(1)); } auto ool = zone()->New<OutOfLineLoadFloat32NaN>(this, i.OutputDoubleRegister()); __ j(parity_even, ool->entry()); __ j(above, &done_compare, Label::kNear); __ j(below, &compare_swap, Label::kNear); __ movmskps(i.TempRegister(0), i.InputDoubleRegister(0)); __ test(i.TempRegister(0), Immediate(1)); __ j(zero, &done_compare, Label::kNear); __ bind(&compare_swap); if (instr->InputAt(1)->IsFPRegister()) { __ movss(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ movss(i.InputDoubleRegister(0), i.InputOperand(1)); } __ bind(&done_compare); __ bind(ool->exit()); break; } case kSSEFloat64Max: { Label compare_swap, done_compare; if (instr->InputAt(1)->IsFPRegister()) { __ ucomisd(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ ucomisd(i.InputDoubleRegister(0), i.InputOperand(1)); } auto ool = zone()->New<OutOfLineLoadFloat64NaN>(this, i.OutputDoubleRegister()); __ j(parity_even, ool->entry()); __ j(above, &done_compare, Label::kNear); __ j(below, &compare_swap, Label::kNear); __ movmskpd(i.TempRegister(0), i.InputDoubleRegister(0)); __ test(i.TempRegister(0), Immediate(1)); __ j(zero, &done_compare, Label::kNear); __ bind(&compare_swap); if (instr->InputAt(1)->IsFPRegister()) { __ movsd(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ movsd(i.InputDoubleRegister(0), i.InputOperand(1)); } __ bind(&done_compare); __ bind(ool->exit()); break; } case kSSEFloat32Min: { Label compare_swap, done_compare; if (instr->InputAt(1)->IsFPRegister()) { __ ucomiss(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ ucomiss(i.InputDoubleRegister(0), i.InputOperand(1)); } auto ool = zone()->New<OutOfLineLoadFloat32NaN>(this, i.OutputDoubleRegister()); __ j(parity_even, ool->entry()); __ j(below, &done_compare, Label::kNear); __ j(above, &compare_swap, Label::kNear); if (instr->InputAt(1)->IsFPRegister()) { __ movmskps(i.TempRegister(0), i.InputDoubleRegister(1)); } else { __ movss(kScratchDoubleReg, i.InputOperand(1)); __ movmskps(i.TempRegister(0), kScratchDoubleReg); } __ test(i.TempRegister(0), Immediate(1)); __ j(zero, &done_compare, Label::kNear); __ bind(&compare_swap); if (instr->InputAt(1)->IsFPRegister()) { __ movss(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ movss(i.InputDoubleRegister(0), i.InputOperand(1)); } __ bind(&done_compare); __ bind(ool->exit()); break; } case kSSEFloat64Min: { Label compare_swap, done_compare; if (instr->InputAt(1)->IsFPRegister()) { __ ucomisd(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ ucomisd(i.InputDoubleRegister(0), i.InputOperand(1)); } auto ool = zone()->New<OutOfLineLoadFloat64NaN>(this, i.OutputDoubleRegister()); __ j(parity_even, ool->entry()); __ j(below, &done_compare, Label::kNear); __ j(above, &compare_swap, Label::kNear); if (instr->InputAt(1)->IsFPRegister()) { __ movmskpd(i.TempRegister(0), i.InputDoubleRegister(1)); } else { __ movsd(kScratchDoubleReg, i.InputOperand(1)); __ movmskpd(i.TempRegister(0), kScratchDoubleReg); } __ test(i.TempRegister(0), Immediate(1)); __ j(zero, &done_compare, Label::kNear); __ bind(&compare_swap); if (instr->InputAt(1)->IsFPRegister()) { __ movsd(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); } else { __ movsd(i.InputDoubleRegister(0), i.InputOperand(1)); } __ bind(&done_compare); __ bind(ool->exit()); break; } case kSSEFloat64Mod: { Register tmp = i.TempRegister(1); __ mov(tmp, esp); __ AllocateStackSpace(kDoubleSize); __ and_(esp, -8); // align to 8 byte boundary. // Move values to st(0) and st(1). __ movsd(Operand(esp, 0), i.InputDoubleRegister(1)); __ fld_d(Operand(esp, 0)); __ movsd(Operand(esp, 0), i.InputDoubleRegister(0)); __ fld_d(Operand(esp, 0)); // Loop while fprem isn't done. Label mod_loop; __ bind(&mod_loop); // This instruction traps on all kinds of inputs, but we are assuming the // floating point control word is set to ignore them all. __ fprem(); // fnstsw_ax clobbers eax. DCHECK_EQ(eax, i.TempRegister(0)); __ fnstsw_ax(); __ sahf(); __ j(parity_even, &mod_loop); // Move output to stack and clean up. __ fstp(1); __ fstp_d(Operand(esp, 0)); __ movsd(i.OutputDoubleRegister(), Operand(esp, 0)); __ mov(esp, tmp); break; } case kSSEFloat64Abs: { // TODO(bmeurer): Use 128-bit constants. XMMRegister tmp = i.TempSimd128Register(0); __ pcmpeqd(tmp, tmp); __ psrlq(tmp, 1); __ andps(i.OutputDoubleRegister(), tmp); break; } case kSSEFloat64Neg: { // TODO(bmeurer): Use 128-bit constants. XMMRegister tmp = i.TempSimd128Register(0); __ pcmpeqd(tmp, tmp); __ psllq(tmp, 63); __ xorps(i.OutputDoubleRegister(), tmp); break; } case kSSEFloat64Sqrt: __ sqrtsd(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEFloat64Round: { CpuFeatureScope sse_scope(tasm(), SSE4_1); RoundingMode const mode = static_cast<RoundingMode>(MiscField::decode(instr->opcode())); __ roundsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), mode); break; } case kSSEFloat32ToFloat64: __ cvtss2sd(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEFloat64ToFloat32: __ cvtsd2ss(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEFloat32ToInt32: __ cvttss2si(i.OutputRegister(), i.InputOperand(0)); break; case kSSEFloat32ToUint32: __ Cvttss2ui(i.OutputRegister(), i.InputOperand(0), i.TempSimd128Register(0)); break; case kSSEFloat64ToInt32: __ cvttsd2si(i.OutputRegister(), i.InputOperand(0)); break; case kSSEFloat64ToUint32: __ Cvttsd2ui(i.OutputRegister(), i.InputOperand(0), i.TempSimd128Register(0)); break; case kSSEInt32ToFloat32: __ cvtsi2ss(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEUint32ToFloat32: __ Cvtui2ss(i.OutputDoubleRegister(), i.InputOperand(0), i.TempRegister(0)); break; case kSSEInt32ToFloat64: __ cvtsi2sd(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kSSEUint32ToFloat64: __ Cvtui2sd(i.OutputDoubleRegister(), i.InputOperand(0), i.TempRegister(0)); break; case kSSEFloat64ExtractLowWord32: if (instr->InputAt(0)->IsFPStackSlot()) { __ mov(i.OutputRegister(), i.InputOperand(0)); } else { __ movd(i.OutputRegister(), i.InputDoubleRegister(0)); } break; case kSSEFloat64ExtractHighWord32: if (instr->InputAt(0)->IsFPStackSlot()) { __ mov(i.OutputRegister(), i.InputOperand(0, kDoubleSize / 2)); } else { __ Pextrd(i.OutputRegister(), i.InputDoubleRegister(0), 1); } break; case kSSEFloat64InsertLowWord32: __ Pinsrd(i.OutputDoubleRegister(), i.InputOperand(1), 0); break; case kSSEFloat64InsertHighWord32: __ Pinsrd(i.OutputDoubleRegister(), i.InputOperand(1), 1); break; case kSSEFloat64LoadLowWord32: __ movd(i.OutputDoubleRegister(), i.InputOperand(0)); break; case kAVXFloat32Add: { CpuFeatureScope avx_scope(tasm(), AVX); __ vaddss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat32Sub: { CpuFeatureScope avx_scope(tasm(), AVX); __ vsubss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat32Mul: { CpuFeatureScope avx_scope(tasm(), AVX); __ vmulss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat32Div: { CpuFeatureScope avx_scope(tasm(), AVX); __ vdivss(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulss depending on the result. __ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; } case kAVXFloat64Add: { CpuFeatureScope avx_scope(tasm(), AVX); __ vaddsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat64Sub: { CpuFeatureScope avx_scope(tasm(), AVX); __ vsubsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat64Mul: { CpuFeatureScope avx_scope(tasm(), AVX); __ vmulsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kAVXFloat64Div: { CpuFeatureScope avx_scope(tasm(), AVX); __ vdivsd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulsd depending on the result. __ movaps(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; } case kAVXFloat32Abs: { // TODO(bmeurer): Use RIP relative 128-bit constants. XMMRegister tmp = i.TempSimd128Register(0); __ pcmpeqd(tmp, tmp); __ psrlq(tmp, 33); CpuFeatureScope avx_scope(tasm(), AVX); __ vandps(i.OutputDoubleRegister(), tmp, i.InputOperand(0)); break; } case kAVXFloat32Neg: { // TODO(bmeurer): Use RIP relative 128-bit constants. XMMRegister tmp = i.TempSimd128Register(0); __ pcmpeqd(tmp, tmp); __ psllq(tmp, 31); CpuFeatureScope avx_scope(tasm(), AVX); __ vxorps(i.OutputDoubleRegister(), tmp, i.InputOperand(0)); break; } case kAVXFloat64Abs: { // TODO(bmeurer): Use RIP relative 128-bit constants. XMMRegister tmp = i.TempSimd128Register(0); __ pcmpeqd(tmp, tmp); __ psrlq(tmp, 1); CpuFeatureScope avx_scope(tasm(), AVX); __ vandpd(i.OutputDoubleRegister(), tmp, i.InputOperand(0)); break; } case kAVXFloat64Neg: { // TODO(bmeurer): Use RIP relative 128-bit constants. XMMRegister tmp = i.TempSimd128Register(0); __ pcmpeqd(tmp, tmp); __ psllq(tmp, 63); CpuFeatureScope avx_scope(tasm(), AVX); __ vxorpd(i.OutputDoubleRegister(), tmp, i.InputOperand(0)); break; } case kSSEFloat64SilenceNaN: __ xorps(kScratchDoubleReg, kScratchDoubleReg); __ subsd(i.InputDoubleRegister(0), kScratchDoubleReg); break; case kIA32Movsxbl: ASSEMBLE_MOVX(movsx_b); break; case kIA32Movzxbl: ASSEMBLE_MOVX(movzx_b); break; case kIA32Movb: { size_t index = 0; Operand operand = i.MemoryOperand(&index); if (HasImmediateInput(instr, index)) { __ mov_b(operand, i.InputInt8(index)); } else { __ mov_b(operand, i.InputRegister(index)); } break; } case kIA32Movsxwl: ASSEMBLE_MOVX(movsx_w); break; case kIA32Movzxwl: ASSEMBLE_MOVX(movzx_w); break; case kIA32Movw: { size_t index = 0; Operand operand = i.MemoryOperand(&index); if (HasImmediateInput(instr, index)) { __ mov_w(operand, i.InputInt16(index)); } else { __ mov_w(operand, i.InputRegister(index)); } break; } case kIA32Movl: if (instr->HasOutput()) { __ mov(i.OutputRegister(), i.MemoryOperand()); } else { size_t index = 0; Operand operand = i.MemoryOperand(&index); if (HasImmediateInput(instr, index)) { __ mov(operand, i.InputImmediate(index)); } else { __ mov(operand, i.InputRegister(index)); } } break; case kIA32Movsd: if (instr->HasOutput()) { __ Movsd(i.OutputDoubleRegister(), i.MemoryOperand()); } else { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ Movsd(operand, i.InputDoubleRegister(index)); } break; case kIA32Movss: if (instr->HasOutput()) { __ Movss(i.OutputDoubleRegister(), i.MemoryOperand()); } else { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ Movss(operand, i.InputDoubleRegister(index)); } break; case kIA32Movdqu: if (instr->HasOutput()) { __ Movdqu(i.OutputSimd128Register(), i.MemoryOperand()); } else { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ Movdqu(operand, i.InputSimd128Register(index)); } break; case kIA32BitcastFI: if (instr->InputAt(0)->IsFPStackSlot()) { __ mov(i.OutputRegister(), i.InputOperand(0)); } else { __ Movd(i.OutputRegister(), i.InputDoubleRegister(0)); } break; case kIA32BitcastIF: if (HasRegisterInput(instr, 0)) { __ Movd(i.OutputDoubleRegister(), i.InputRegister(0)); } else { __ Movss(i.OutputDoubleRegister(), i.InputOperand(0)); } break; case kIA32Lea: { AddressingMode mode = AddressingModeField::decode(instr->opcode()); // Shorten "leal" to "addl", "subl" or "shll" if the register allocation // and addressing mode just happens to work out. The "addl"/"subl" forms // in these cases are faster based on measurements. if (mode == kMode_MI) { __ Move(i.OutputRegister(), Immediate(i.InputInt32(0))); } else if (i.InputRegister(0) == i.OutputRegister()) { if (mode == kMode_MRI) { int32_t constant_summand = i.InputInt32(1); if (constant_summand > 0) { __ add(i.OutputRegister(), Immediate(constant_summand)); } else if (constant_summand < 0) { __ sub(i.OutputRegister(), Immediate(base::NegateWithWraparound(constant_summand))); } } else if (mode == kMode_MR1) { if (i.InputRegister(1) == i.OutputRegister()) { __ shl(i.OutputRegister(), 1); } else { __ add(i.OutputRegister(), i.InputRegister(1)); } } else if (mode == kMode_M2) { __ shl(i.OutputRegister(), 1); } else if (mode == kMode_M4) { __ shl(i.OutputRegister(), 2); } else if (mode == kMode_M8) { __ shl(i.OutputRegister(), 3); } else { __ lea(i.OutputRegister(), i.MemoryOperand()); } } else if (mode == kMode_MR1 && i.InputRegister(1) == i.OutputRegister()) { __ add(i.OutputRegister(), i.InputRegister(0)); } else { __ lea(i.OutputRegister(), i.MemoryOperand()); } break; } case kIA32Push: { int stack_decrement = i.InputInt32(0); int slots = stack_decrement / kSystemPointerSize; // Whenever codegen uses push, we need to check if stack_decrement // contains any extra padding and adjust the stack before the push. if (HasImmediateInput(instr, 1)) { __ AllocateStackSpace(stack_decrement - kSystemPointerSize); __ push(i.InputImmediate(1)); } else if (HasAddressingMode(instr)) { // Only single slot pushes from memory are supported. __ AllocateStackSpace(stack_decrement - kSystemPointerSize); size_t index = 1; Operand operand = i.MemoryOperand(&index); __ push(operand); } else { InstructionOperand* input = instr->InputAt(1); if (input->IsRegister()) { __ AllocateStackSpace(stack_decrement - kSystemPointerSize); __ push(i.InputRegister(1)); } else if (input->IsFloatRegister()) { DCHECK_GE(stack_decrement, kFloatSize); __ AllocateStackSpace(stack_decrement); __ Movss(Operand(esp, 0), i.InputDoubleRegister(1)); } else if (input->IsDoubleRegister()) { DCHECK_GE(stack_decrement, kDoubleSize); __ AllocateStackSpace(stack_decrement); __ Movsd(Operand(esp, 0), i.InputDoubleRegister(1)); } else if (input->IsSimd128Register()) { DCHECK_GE(stack_decrement, kSimd128Size); __ AllocateStackSpace(stack_decrement); // TODO(bbudge) Use Movaps when slots are aligned. __ Movups(Operand(esp, 0), i.InputSimd128Register(1)); } else if (input->IsStackSlot() || input->IsFloatStackSlot()) { __ AllocateStackSpace(stack_decrement - kSystemPointerSize); __ push(i.InputOperand(1)); } else if (input->IsDoubleStackSlot()) { DCHECK_GE(stack_decrement, kDoubleSize); __ Movsd(kScratchDoubleReg, i.InputOperand(1)); __ AllocateStackSpace(stack_decrement); __ Movsd(Operand(esp, 0), kScratchDoubleReg); } else { DCHECK(input->IsSimd128StackSlot()); DCHECK_GE(stack_decrement, kSimd128Size); // TODO(bbudge) Use Movaps when slots are aligned. __ Movups(kScratchDoubleReg, i.InputOperand(1)); __ AllocateStackSpace(stack_decrement); __ Movups(Operand(esp, 0), kScratchDoubleReg); } } frame_access_state()->IncreaseSPDelta(slots); break; } case kIA32Poke: { int slot = MiscField::decode(instr->opcode()); if (HasImmediateInput(instr, 0)) { __ mov(Operand(esp, slot * kSystemPointerSize), i.InputImmediate(0)); } else { __ mov(Operand(esp, slot * kSystemPointerSize), i.InputRegister(0)); } break; } case kIA32Peek: { int reverse_slot = i.InputInt32(0); int offset = FrameSlotToFPOffset(frame()->GetTotalFrameSlotCount() - reverse_slot); if (instr->OutputAt(0)->IsFPRegister()) { LocationOperand* op = LocationOperand::cast(instr->OutputAt(0)); if (op->representation() == MachineRepresentation::kFloat64) { __ Movsd(i.OutputDoubleRegister(), Operand(ebp, offset)); } else if (op->representation() == MachineRepresentation::kFloat32) { __ Movss(i.OutputFloatRegister(), Operand(ebp, offset)); } else { DCHECK_EQ(MachineRepresentation::kSimd128, op->representation()); __ Movdqu(i.OutputSimd128Register(), Operand(ebp, offset)); } } else { __ mov(i.OutputRegister(), Operand(ebp, offset)); } break; } case kIA32F64x2Splat: { __ Movddup(i.OutputSimd128Register(), i.InputDoubleRegister(0)); break; } case kF64x2ExtractLane: { __ F64x2ExtractLane(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputUint8(1)); break; } case kF64x2ReplaceLane: { __ F64x2ReplaceLane(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputDoubleRegister(2), i.InputInt8(1)); break; } case kIA32F64x2Sqrt: { __ Sqrtpd(i.OutputSimd128Register(), i.InputOperand(0)); break; } case kIA32F64x2Add: { __ Addpd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kIA32F64x2Sub: { __ Subpd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kIA32F64x2Mul: { __ Mulpd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kIA32F64x2Div: { __ Divpd(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputOperand(1)); break; } case kIA32F64x2Min: { __ F64x2Min(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kIA32F64x2Max: { __ F64x2Max(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kIA32F64x2Eq: { __ Cmpeqpd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32F64x2Ne: { __ Cmpneqpd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32F64x2Lt: { __ Cmpltpd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32F64x2Le: { __ Cmplepd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32F64x2Pmin: { __ Minpd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1)); break; } case kIA32F64x2Pmax: { __ Maxpd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1)); break; } case kIA32F64x2Round: { RoundingMode const mode = static_cast<RoundingMode>(MiscField::decode(instr->opcode())); __ Roundpd(i.OutputSimd128Register(), i.InputDoubleRegister(0), mode); break; } case kIA32F64x2PromoteLowF32x4: { __ Cvtps2pd(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kIA32F32x4DemoteF64x2Zero: { __ Cvtpd2ps(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kIA32I32x4TruncSatF64x2SZero: { __ I32x4TruncSatF64x2SZero(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg, i.TempRegister(0)); break; } case kIA32I32x4TruncSatF64x2UZero: { __ I32x4TruncSatF64x2UZero(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg, i.TempRegister(0)); break; } case kIA32F64x2ConvertLowI32x4S: { __ Cvtdq2pd(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kIA32F64x2ConvertLowI32x4U: { __ F64x2ConvertLowI32x4U(i.OutputSimd128Register(), i.InputSimd128Register(0), i.TempRegister(0)); break; } case kIA32I64x2ExtMulLowI32x4S: { __ I64x2ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/true, /*is_signed=*/true); break; } case kIA32I64x2ExtMulHighI32x4S: { __ I64x2ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/false, /*is_signed=*/true); break; } case kIA32I64x2ExtMulLowI32x4U: { __ I64x2ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/true, /*is_signed=*/false); break; } case kIA32I64x2ExtMulHighI32x4U: { __ I64x2ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/false, /*is_signed=*/false); break; } case kIA32I32x4ExtMulLowI16x8S: { __ I32x4ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/true, /*is_signed=*/true); break; } case kIA32I32x4ExtMulHighI16x8S: { __ I32x4ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/false, /*is_signed=*/true); break; } case kIA32I32x4ExtMulLowI16x8U: { __ I32x4ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/true, /*is_signed=*/false); break; } case kIA32I32x4ExtMulHighI16x8U: { __ I32x4ExtMul(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*low=*/false, /*is_signed=*/false); break; } case kIA32I16x8ExtMulLowI8x16S: { __ I16x8ExtMulLow(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*is_signed=*/true); break; } case kIA32I16x8ExtMulHighI8x16S: { __ I16x8ExtMulHighS(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kIA32I16x8ExtMulLowI8x16U: { __ I16x8ExtMulLow(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, /*is_signed=*/false); break; } case kIA32I16x8ExtMulHighI8x16U: { __ I16x8ExtMulHighU(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kIA32I64x2SplatI32Pair: { XMMRegister dst = i.OutputSimd128Register(); __ Pinsrd(dst, i.InputRegister(0), 0); __ Pinsrd(dst, i.InputOperand(1), 1); __ Pshufd(dst, dst, uint8_t{0x44}); break; } case kIA32I64x2ReplaceLaneI32Pair: { int8_t lane = i.InputInt8(1); __ Pinsrd(i.OutputSimd128Register(), i.InputOperand(2), lane * 2); __ Pinsrd(i.OutputSimd128Register(), i.InputOperand(3), lane * 2 + 1); break; } case kIA32I64x2Abs: { __ I64x2Abs(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kIA32I64x2Neg: { __ I64x2Neg(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kIA32I64x2Shl: { ASSEMBLE_SIMD_SHIFT(Psllq, 6); break; } case kIA32I64x2ShrS: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); if (HasImmediateInput(instr, 1)) { __ I64x2ShrS(dst, src, i.InputInt6(1), kScratchDoubleReg); } else { __ I64x2ShrS(dst, src, i.InputRegister(1), kScratchDoubleReg, i.TempSimd128Register(0), i.TempRegister(1)); } break; } case kIA32I64x2Add: { __ Paddq(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I64x2Sub: { __ Psubq(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I64x2Mul: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister left = i.InputSimd128Register(0); XMMRegister right = i.InputSimd128Register(1); XMMRegister tmp1 = i.TempSimd128Register(0); XMMRegister tmp2 = i.TempSimd128Register(1); __ Movaps(tmp1, left); __ Movaps(tmp2, right); // Multiply high dword of each qword of left with right. __ Psrlq(tmp1, byte{32}); __ Pmuludq(tmp1, tmp1, right); // Multiply high dword of each qword of right with left. __ Psrlq(tmp2, byte{32}); __ Pmuludq(tmp2, tmp2, left); __ Paddq(tmp2, tmp2, tmp1); __ Psllq(tmp2, tmp2, byte{32}); __ Pmuludq(dst, left, right); __ Paddq(dst, dst, tmp2); break; } case kIA32I64x2ShrU: { ASSEMBLE_SIMD_SHIFT(Psrlq, 6); break; } case kIA32I64x2BitMask: { __ Movmskpd(i.OutputRegister(), i.InputSimd128Register(0)); break; } case kIA32I64x2Eq: { __ Pcmpeqq(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I64x2Ne: { __ Pcmpeqq(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); __ Pcmpeqq(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg); __ Pxor(i.OutputSimd128Register(), kScratchDoubleReg); break; } case kIA32I64x2GtS: { __ I64x2GtS(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kIA32I64x2GeS: { __ I64x2GeS(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kIA32I64x2SConvertI32x4Low: { __ Pmovsxdq(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kIA32I64x2SConvertI32x4High: { __ I64x2SConvertI32x4High(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kIA32I64x2UConvertI32x4Low: { __ Pmovzxdq(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kIA32I64x2UConvertI32x4High: { __ I64x2UConvertI32x4High(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kIA32I32x4ExtAddPairwiseI16x8S: { __ I32x4ExtAddPairwiseI16x8S(i.OutputSimd128Register(), i.InputSimd128Register(0), i.TempRegister(0)); break; } case kIA32I32x4ExtAddPairwiseI16x8U: { __ I32x4ExtAddPairwiseI16x8U(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kIA32I16x8ExtAddPairwiseI8x16S: { __ I16x8ExtAddPairwiseI8x16S(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg, i.TempRegister(0)); break; } case kIA32I16x8ExtAddPairwiseI8x16U: { __ I16x8ExtAddPairwiseI8x16U(i.OutputSimd128Register(), i.InputSimd128Register(0), i.TempRegister(0)); break; } case kIA32I16x8Q15MulRSatS: { __ I16x8Q15MulRSatS(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg); break; } case kIA32F32x4Splat: { __ F32x4Splat(i.OutputSimd128Register(), i.InputDoubleRegister(0)); break; } case kIA32F32x4ExtractLane: { __ F32x4ExtractLane(i.OutputFloatRegister(), i.InputSimd128Register(0), i.InputUint8(1)); break; } case kIA32Insertps: { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope avx_scope(tasm(), AVX); __ vinsertps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(2), i.InputInt8(1) << 4); } else { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); __ insertps(i.OutputSimd128Register(), i.InputOperand(2), i.InputInt8(1) << 4); } break; } case kIA32F32x4SConvertI32x4: { __ Cvtdq2ps(i.OutputSimd128Register(), i.InputOperand(0)); break; } case kIA32F32x4UConvertI32x4: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); __ Pxor(kScratchDoubleReg, kScratchDoubleReg); // zeros __ Pblendw(kScratchDoubleReg, src, uint8_t{0x55}); // get lo 16 bits __ Psubd(dst, src, kScratchDoubleReg); // get hi 16 bits __ Cvtdq2ps(kScratchDoubleReg, kScratchDoubleReg); // convert lo exactly __ Psrld(dst, dst, byte{1}); // divide by 2 to get in unsigned range __ Cvtdq2ps(dst, dst); // convert hi exactly __ Addps(dst, dst, dst); // double hi, exactly __ Addps(dst, dst, kScratchDoubleReg); // add hi and lo, may round. break; } case kIA32F32x4Abs: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); if (dst == src) { __ Pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ Psrld(kScratchDoubleReg, kScratchDoubleReg, byte{1}); __ Andps(dst, kScratchDoubleReg); } else { __ Pcmpeqd(dst, dst); __ Psrld(dst, dst, byte{1}); __ Andps(dst, src); } break; } case kIA32F32x4Neg: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); if (dst == src) { __ Pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ Pslld(kScratchDoubleReg, kScratchDoubleReg, byte{31}); __ Xorps(dst, kScratchDoubleReg); } else { __ Pcmpeqd(dst, dst); __ Pslld(dst, dst, byte{31}); __ Xorps(dst, src); } break; } case kIA32F32x4Sqrt: { __ Sqrtps(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kIA32F32x4RecipApprox: { __ Rcpps(i.OutputSimd128Register(), i.InputOperand(0)); break; } case kIA32F32x4RecipSqrtApprox: { __ Rsqrtps(i.OutputSimd128Register(), i.InputOperand(0)); break; } case kIA32F32x4Add: { __ Addps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; }; case kIA32F32x4Sub: { __ Subps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32F32x4Mul: { __ Mulps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32F32x4Div: { __ Divps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEF32x4Min: { XMMRegister src1 = i.InputSimd128Register(1), dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); // The minps instruction doesn't propagate NaNs and +0's in its first // operand. Perform minps in both orders, merge the resuls, and adjust. __ movaps(kScratchDoubleReg, src1); __ minps(kScratchDoubleReg, dst); __ minps(dst, src1); // propagate -0's and NaNs, which may be non-canonical. __ orps(kScratchDoubleReg, dst); // Canonicalize NaNs by quieting and clearing the payload. __ cmpps(dst, kScratchDoubleReg, 3); __ orps(kScratchDoubleReg, dst); __ psrld(dst, 10); __ andnps(dst, kScratchDoubleReg); break; } case kAVXF32x4Min: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); XMMRegister src0 = i.InputSimd128Register(0); Operand src1 = i.InputOperand(1); // See comment above for correction of minps. __ vmovups(kScratchDoubleReg, src1); __ vminps(kScratchDoubleReg, kScratchDoubleReg, src0); __ vminps(dst, src0, src1); __ vorps(dst, dst, kScratchDoubleReg); __ vcmpneqps(kScratchDoubleReg, dst, dst); __ vorps(dst, dst, kScratchDoubleReg); __ vpsrld(kScratchDoubleReg, kScratchDoubleReg, 10); __ vandnps(dst, kScratchDoubleReg, dst); break; } case kSSEF32x4Max: { XMMRegister src1 = i.InputSimd128Register(1), dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); // The maxps instruction doesn't propagate NaNs and +0's in its first // operand. Perform maxps in both orders, merge the resuls, and adjust. __ movaps(kScratchDoubleReg, src1); __ maxps(kScratchDoubleReg, dst); __ maxps(dst, src1); // Find discrepancies. __ xorps(dst, kScratchDoubleReg); // Propagate NaNs, which may be non-canonical. __ orps(kScratchDoubleReg, dst); // Propagate sign discrepancy and (subtle) quiet NaNs. __ subps(kScratchDoubleReg, dst); // Canonicalize NaNs by clearing the payload. __ cmpps(dst, kScratchDoubleReg, 3); __ psrld(dst, 10); __ andnps(dst, kScratchDoubleReg); break; } case kAVXF32x4Max: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); XMMRegister src0 = i.InputSimd128Register(0); Operand src1 = i.InputOperand(1); // See comment above for correction of maxps. __ vmovups(kScratchDoubleReg, src1); __ vmaxps(kScratchDoubleReg, kScratchDoubleReg, src0); __ vmaxps(dst, src0, src1); __ vxorps(dst, dst, kScratchDoubleReg); __ vorps(kScratchDoubleReg, kScratchDoubleReg, dst); __ vsubps(kScratchDoubleReg, kScratchDoubleReg, dst); __ vcmpneqps(dst, kScratchDoubleReg, kScratchDoubleReg); __ vpsrld(dst, dst, 10); __ vandnps(dst, dst, kScratchDoubleReg); break; } case kSSEF32x4Eq: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ cmpeqps(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXF32x4Eq: { CpuFeatureScope avx_scope(tasm(), AVX); __ vcmpeqps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEF32x4Ne: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ cmpneqps(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXF32x4Ne: { CpuFeatureScope avx_scope(tasm(), AVX); __ vcmpneqps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEF32x4Lt: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ cmpltps(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXF32x4Lt: { CpuFeatureScope avx_scope(tasm(), AVX); __ vcmpltps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEF32x4Le: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ cmpleps(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXF32x4Le: { CpuFeatureScope avx_scope(tasm(), AVX); __ vcmpleps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32F32x4Pmin: { __ Minps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1)); break; } case kIA32F32x4Pmax: { __ Maxps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1)); break; } case kIA32F32x4Round: { RoundingMode const mode = static_cast<RoundingMode>(MiscField::decode(instr->opcode())); __ Roundps(i.OutputSimd128Register(), i.InputDoubleRegister(0), mode); break; } case kIA32I32x4Splat: { XMMRegister dst = i.OutputSimd128Register(); __ Movd(dst, i.InputOperand(0)); __ Pshufd(dst, dst, uint8_t{0x0}); break; } case kIA32I32x4ExtractLane: { __ Pextrd(i.OutputRegister(), i.InputSimd128Register(0), i.InputInt8(1)); break; } case kIA32I32x4SConvertF32x4: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); // NAN->0 __ Cmpeqps(kScratchDoubleReg, src, src); __ Pand(dst, src, kScratchDoubleReg); // Set top bit if >= 0 (but not -0.0!) __ Pxor(kScratchDoubleReg, dst); // Convert __ Cvttps2dq(dst, dst); // Set top bit if >=0 is now < 0 __ Pand(kScratchDoubleReg, dst); __ Psrad(kScratchDoubleReg, kScratchDoubleReg, byte{31}); // Set positive overflow lanes to 0x7FFFFFFF __ Pxor(dst, kScratchDoubleReg); break; } case kIA32I32x4SConvertI16x8Low: { __ Pmovsxwd(i.OutputSimd128Register(), i.InputOperand(0)); break; } case kIA32I32x4SConvertI16x8High: { __ I32x4SConvertI16x8High(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kIA32I32x4Neg: { XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(0); if (src.is_reg(dst)) { __ Pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ Psignd(dst, kScratchDoubleReg); } else { __ Pxor(dst, dst); __ Psubd(dst, src); } break; } case kIA32I32x4Shl: { ASSEMBLE_SIMD_SHIFT(Pslld, 5); break; } case kIA32I32x4ShrS: { ASSEMBLE_SIMD_SHIFT(Psrad, 5); break; } case kSSEI32x4Add: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ paddd(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI32x4Add: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpaddd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI32x4Sub: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ psubd(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI32x4Sub: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpsubd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI32x4Mul: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); __ pmulld(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI32x4Mul: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpmulld(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI32x4MinS: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); __ pminsd(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI32x4MinS: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpminsd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI32x4MaxS: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); __ pmaxsd(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI32x4MaxS: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpmaxsd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI32x4Eq: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ pcmpeqd(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI32x4Eq: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpcmpeqd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI32x4Ne: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ pcmpeqd(i.OutputSimd128Register(), i.InputOperand(1)); __ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ xorps(i.OutputSimd128Register(), kScratchDoubleReg); break; } case kAVXI32x4Ne: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpcmpeqd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); __ vpcmpeqd(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg); __ vpxor(i.OutputSimd128Register(), i.OutputSimd128Register(), kScratchDoubleReg); break; } case kSSEI32x4GtS: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ pcmpgtd(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI32x4GtS: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpcmpgtd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI32x4GeS: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(1); __ pminsd(dst, src); __ pcmpeqd(dst, src); break; } case kAVXI32x4GeS: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister src1 = i.InputSimd128Register(0); Operand src2 = i.InputOperand(1); __ vpminsd(kScratchDoubleReg, src1, src2); __ vpcmpeqd(i.OutputSimd128Register(), kScratchDoubleReg, src2); break; } case kSSEI32x4UConvertF32x4: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); XMMRegister dst = i.OutputSimd128Register(); XMMRegister tmp = i.TempSimd128Register(0); // NAN->0, negative->0 __ xorps(kScratchDoubleReg, kScratchDoubleReg); __ maxps(dst, kScratchDoubleReg); // scratch: float representation of max_signed __ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ psrld(kScratchDoubleReg, 1); // 0x7fffffff __ cvtdq2ps(kScratchDoubleReg, kScratchDoubleReg); // 0x4f000000 // tmp: convert (src-max_signed). // Positive overflow lanes -> 0x7FFFFFFF // Negative lanes -> 0 __ movaps(tmp, dst); __ subps(tmp, kScratchDoubleReg); __ cmpleps(kScratchDoubleReg, tmp); __ cvttps2dq(tmp, tmp); __ xorps(tmp, kScratchDoubleReg); __ xorps(kScratchDoubleReg, kScratchDoubleReg); __ pmaxsd(tmp, kScratchDoubleReg); // convert. Overflow lanes above max_signed will be 0x80000000 __ cvttps2dq(dst, dst); // Add (src-max_signed) for overflow lanes. __ paddd(dst, tmp); break; } case kAVXI32x4UConvertF32x4: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); XMMRegister tmp = i.TempSimd128Register(0); // NAN->0, negative->0 __ vpxor(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg); __ vmaxps(dst, dst, kScratchDoubleReg); // scratch: float representation of max_signed __ vpcmpeqd(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg); __ vpsrld(kScratchDoubleReg, kScratchDoubleReg, 1); // 0x7fffffff __ vcvtdq2ps(kScratchDoubleReg, kScratchDoubleReg); // 0x4f000000 // tmp: convert (src-max_signed). // Positive overflow lanes -> 0x7FFFFFFF // Negative lanes -> 0 __ vsubps(tmp, dst, kScratchDoubleReg); __ vcmpleps(kScratchDoubleReg, kScratchDoubleReg, tmp); __ vcvttps2dq(tmp, tmp); __ vpxor(tmp, tmp, kScratchDoubleReg); __ vpxor(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg); __ vpmaxsd(tmp, tmp, kScratchDoubleReg); // convert. Overflow lanes above max_signed will be 0x80000000 __ vcvttps2dq(dst, dst); // Add (src-max_signed) for overflow lanes. __ vpaddd(dst, dst, tmp); break; } case kIA32I32x4UConvertI16x8Low: { __ Pmovzxwd(i.OutputSimd128Register(), i.InputOperand(0)); break; } case kIA32I32x4UConvertI16x8High: { __ I32x4UConvertI16x8High(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kIA32I32x4ShrU: { ASSEMBLE_SIMD_SHIFT(Psrld, 5); break; } case kSSEI32x4MinU: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); __ pminud(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI32x4MinU: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpminud(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI32x4MaxU: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); __ pmaxud(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI32x4MaxU: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpmaxud(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI32x4GtU: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(1); __ pmaxud(dst, src); __ pcmpeqd(dst, src); __ pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ xorps(dst, kScratchDoubleReg); break; } case kAVXI32x4GtU: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); XMMRegister src1 = i.InputSimd128Register(0); Operand src2 = i.InputOperand(1); __ vpmaxud(kScratchDoubleReg, src1, src2); __ vpcmpeqd(dst, kScratchDoubleReg, src2); __ vpcmpeqd(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg); __ vpxor(dst, dst, kScratchDoubleReg); break; } case kSSEI32x4GeU: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(1); __ pminud(dst, src); __ pcmpeqd(dst, src); break; } case kAVXI32x4GeU: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister src1 = i.InputSimd128Register(0); Operand src2 = i.InputOperand(1); __ vpminud(kScratchDoubleReg, src1, src2); __ vpcmpeqd(i.OutputSimd128Register(), kScratchDoubleReg, src2); break; } case kIA32I32x4Abs: { __ Pabsd(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kIA32I32x4BitMask: { __ Movmskps(i.OutputRegister(), i.InputSimd128Register(0)); break; } case kIA32I32x4DotI16x8S: { __ Pmaddwd(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I16x8Splat: { XMMRegister dst = i.OutputSimd128Register(); __ Movd(dst, i.InputOperand(0)); __ Pshuflw(dst, dst, uint8_t{0x0}); __ Pshufd(dst, dst, uint8_t{0x0}); break; } case kIA32I16x8ExtractLaneS: { Register dst = i.OutputRegister(); __ Pextrw(dst, i.InputSimd128Register(0), i.InputUint8(1)); __ movsx_w(dst, dst); break; } case kIA32I16x8SConvertI8x16Low: { __ Pmovsxbw(i.OutputSimd128Register(), i.InputOperand(0)); break; } case kIA32I16x8SConvertI8x16High: { __ I16x8SConvertI8x16High(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kIA32I16x8Neg: { XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(0); if (src.is_reg(dst)) { __ Pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ Psignw(dst, kScratchDoubleReg); } else { __ Pxor(dst, dst); __ Psubw(dst, src); } break; } case kIA32I16x8Shl: { ASSEMBLE_SIMD_SHIFT(Psllw, 4); break; } case kIA32I16x8ShrS: { ASSEMBLE_SIMD_SHIFT(Psraw, 4); break; } case kSSEI16x8SConvertI32x4: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ packssdw(i.OutputSimd128Register(), i.InputSimd128Register(1)); break; } case kAVXI16x8SConvertI32x4: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpackssdw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8Add: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ paddw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8Add: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpaddw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8AddSatS: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ paddsw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8AddSatS: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpaddsw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8Sub: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ psubw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8Sub: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpsubw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8SubSatS: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ psubsw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8SubSatS: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpsubsw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8Mul: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ pmullw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8Mul: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpmullw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8MinS: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ pminsw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8MinS: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpminsw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8MaxS: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ pmaxsw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8MaxS: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpmaxsw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8Eq: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ pcmpeqw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8Eq: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpcmpeqw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8Ne: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ pcmpeqw(i.OutputSimd128Register(), i.InputOperand(1)); __ pcmpeqw(kScratchDoubleReg, kScratchDoubleReg); __ xorps(i.OutputSimd128Register(), kScratchDoubleReg); break; } case kAVXI16x8Ne: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpcmpeqw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); __ vpcmpeqw(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg); __ vpxor(i.OutputSimd128Register(), i.OutputSimd128Register(), kScratchDoubleReg); break; } case kSSEI16x8GtS: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ pcmpgtw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8GtS: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpcmpgtw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8GeS: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(1); __ pminsw(dst, src); __ pcmpeqw(dst, src); break; } case kAVXI16x8GeS: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister src1 = i.InputSimd128Register(0); Operand src2 = i.InputOperand(1); __ vpminsw(kScratchDoubleReg, src1, src2); __ vpcmpeqw(i.OutputSimd128Register(), kScratchDoubleReg, src2); break; } case kIA32I16x8UConvertI8x16Low: { __ Pmovzxbw(i.OutputSimd128Register(), i.InputOperand(0)); break; } case kIA32I16x8UConvertI8x16High: { __ I16x8UConvertI8x16High(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kIA32I16x8ShrU: { ASSEMBLE_SIMD_SHIFT(Psrlw, 4); break; } case kSSEI16x8UConvertI32x4: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); __ packusdw(i.OutputSimd128Register(), i.InputSimd128Register(1)); break; } case kAVXI16x8UConvertI32x4: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); __ vpackusdw(dst, dst, i.InputSimd128Register(1)); break; } case kSSEI16x8AddSatU: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ paddusw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8AddSatU: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpaddusw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8SubSatU: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ psubusw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8SubSatU: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpsubusw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8MinU: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); __ pminuw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8MinU: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpminuw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8MaxU: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); __ pmaxuw(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI16x8MaxU: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpmaxuw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI16x8GtU: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(1); __ pmaxuw(dst, src); __ pcmpeqw(dst, src); __ pcmpeqw(kScratchDoubleReg, kScratchDoubleReg); __ xorps(dst, kScratchDoubleReg); break; } case kAVXI16x8GtU: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); XMMRegister src1 = i.InputSimd128Register(0); Operand src2 = i.InputOperand(1); __ vpmaxuw(kScratchDoubleReg, src1, src2); __ vpcmpeqw(dst, kScratchDoubleReg, src2); __ vpcmpeqw(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg); __ vpxor(dst, dst, kScratchDoubleReg); break; } case kSSEI16x8GeU: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(1); __ pminuw(dst, src); __ pcmpeqw(dst, src); break; } case kAVXI16x8GeU: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister src1 = i.InputSimd128Register(0); Operand src2 = i.InputOperand(1); __ vpminuw(kScratchDoubleReg, src1, src2); __ vpcmpeqw(i.OutputSimd128Register(), kScratchDoubleReg, src2); break; } case kIA32I16x8RoundingAverageU: { __ Pavgw(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I16x8Abs: { __ Pabsw(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kIA32I16x8BitMask: { Register dst = i.OutputRegister(); XMMRegister tmp = i.TempSimd128Register(0); __ Packsswb(tmp, i.InputSimd128Register(0)); __ Pmovmskb(dst, tmp); __ shr(dst, 8); break; } case kIA32I8x16Splat: { XMMRegister dst = i.OutputSimd128Register(); __ Movd(dst, i.InputOperand(0)); __ Pxor(kScratchDoubleReg, kScratchDoubleReg); __ Pshufb(dst, kScratchDoubleReg); break; } case kIA32I8x16ExtractLaneS: { Register dst = i.OutputRegister(); __ Pextrb(dst, i.InputSimd128Register(0), i.InputUint8(1)); __ movsx_b(dst, dst); break; } case kIA32Pinsrb: { ASSEMBLE_SIMD_PINSR(pinsrb, SSE4_1); break; } case kIA32Pinsrw: { ASSEMBLE_SIMD_PINSR(pinsrw, SSE4_1); break; } case kIA32Pinsrd: { ASSEMBLE_SIMD_PINSR(pinsrd, SSE4_1); break; } case kIA32Movlps: { if (instr->HasOutput()) { __ Movlps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.MemoryOperand(2)); } else { size_t index = 0; Operand dst = i.MemoryOperand(&index); __ Movlps(dst, i.InputSimd128Register(index)); } break; } case kIA32Movhps: { if (instr->HasOutput()) { __ Movhps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.MemoryOperand(2)); } else { size_t index = 0; Operand dst = i.MemoryOperand(&index); __ Movhps(dst, i.InputSimd128Register(index)); } break; } case kIA32Pextrb: { if (HasAddressingMode(instr)) { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ Pextrb(operand, i.InputSimd128Register(index), i.InputUint8(index + 1)); } else { Register dst = i.OutputRegister(); __ Pextrb(dst, i.InputSimd128Register(0), i.InputUint8(1)); } break; } case kIA32Pextrw: { if (HasAddressingMode(instr)) { size_t index = 0; Operand operand = i.MemoryOperand(&index); __ Pextrw(operand, i.InputSimd128Register(index), i.InputUint8(index + 1)); } else { Register dst = i.OutputRegister(); __ Pextrw(dst, i.InputSimd128Register(0), i.InputUint8(1)); } break; } case kIA32S128Store32Lane: { size_t index = 0; Operand operand = i.MemoryOperand(&index); uint8_t laneidx = i.InputUint8(index + 1); __ S128Store32Lane(operand, i.InputSimd128Register(index), laneidx); break; } case kSSEI8x16SConvertI16x8: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ packsswb(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXI8x16SConvertI16x8: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpacksswb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I8x16Neg: { XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(0); if (src.is_reg(dst)) { __ Pcmpeqd(kScratchDoubleReg, kScratchDoubleReg); __ Psignb(dst, kScratchDoubleReg); } else { __ Pxor(dst, dst); __ Psubb(dst, src); } break; } case kIA32I8x16Shl: { XMMRegister dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); Register tmp = i.ToRegister(instr->TempAt(0)); XMMRegister tmp_simd = i.TempSimd128Register(1); if (HasImmediateInput(instr, 1)) { // Perform 16-bit shift, then mask away low bits. uint8_t shift = i.InputInt3(1); __ Psllw(dst, dst, byte{shift}); uint8_t bmask = static_cast<uint8_t>(0xff << shift); uint32_t mask = bmask << 24 | bmask << 16 | bmask << 8 | bmask; __ mov(tmp, mask); __ Movd(tmp_simd, tmp); __ Pshufd(tmp_simd, tmp_simd, uint8_t{0}); __ Pand(dst, tmp_simd); } else { // Take shift value modulo 8. __ mov(tmp, i.InputRegister(1)); __ and_(tmp, 7); // Mask off the unwanted bits before word-shifting. __ Pcmpeqw(kScratchDoubleReg, kScratchDoubleReg); __ add(tmp, Immediate(8)); __ Movd(tmp_simd, tmp); __ Psrlw(kScratchDoubleReg, kScratchDoubleReg, tmp_simd); __ Packuswb(kScratchDoubleReg, kScratchDoubleReg); __ Pand(dst, kScratchDoubleReg); // TODO(zhin): sub here to avoid asking for another temporary register, // examine codegen for other i8x16 shifts, they use less instructions. __ sub(tmp, Immediate(8)); __ Movd(tmp_simd, tmp); __ Psllw(dst, dst, tmp_simd); } break; } case kIA32I8x16ShrS: { XMMRegister dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); if (HasImmediateInput(instr, 1)) { __ Punpckhbw(kScratchDoubleReg, dst); __ Punpcklbw(dst, dst); uint8_t shift = i.InputInt3(1) + 8; __ Psraw(kScratchDoubleReg, shift); __ Psraw(dst, shift); __ Packsswb(dst, kScratchDoubleReg); } else { Register tmp = i.ToRegister(instr->TempAt(0)); XMMRegister tmp_simd = i.TempSimd128Register(1); // Unpack the bytes into words, do arithmetic shifts, and repack. __ Punpckhbw(kScratchDoubleReg, dst); __ Punpcklbw(dst, dst); __ mov(tmp, i.InputRegister(1)); // Take shift value modulo 8. __ and_(tmp, 7); __ add(tmp, Immediate(8)); __ Movd(tmp_simd, tmp); __ Psraw(kScratchDoubleReg, kScratchDoubleReg, tmp_simd); __ Psraw(dst, dst, tmp_simd); __ Packsswb(dst, kScratchDoubleReg); } break; } case kIA32I8x16Add: { __ Paddb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I8x16AddSatS: { __ Paddsb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I8x16Sub: { __ Psubb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I8x16SubSatS: { __ Psubsb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I8x16MinS: { __ Pminsb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I8x16MaxS: { __ Pmaxsb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I8x16Eq: { __ Pcmpeqb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI8x16Ne: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ pcmpeqb(i.OutputSimd128Register(), i.InputOperand(1)); __ pcmpeqb(kScratchDoubleReg, kScratchDoubleReg); __ xorps(i.OutputSimd128Register(), kScratchDoubleReg); break; } case kAVXI8x16Ne: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpcmpeqb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); __ vpcmpeqb(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg); __ vpxor(i.OutputSimd128Register(), i.OutputSimd128Register(), kScratchDoubleReg); break; } case kIA32I8x16GtS: { __ Pcmpgtb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI8x16GeS: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(1); __ pminsb(dst, src); __ pcmpeqb(dst, src); break; } case kAVXI8x16GeS: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister src1 = i.InputSimd128Register(0); Operand src2 = i.InputOperand(1); __ vpminsb(kScratchDoubleReg, src1, src2); __ vpcmpeqb(i.OutputSimd128Register(), kScratchDoubleReg, src2); break; } case kSSEI8x16UConvertI16x8: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope sse_scope(tasm(), SSE4_1); XMMRegister dst = i.OutputSimd128Register(); __ packuswb(dst, i.InputOperand(1)); break; } case kAVXI8x16UConvertI16x8: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); __ vpackuswb(dst, dst, i.InputOperand(1)); break; } case kIA32I8x16AddSatU: { __ Paddusb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I8x16SubSatU: { __ Psubusb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I8x16ShrU: { XMMRegister dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); Register tmp = i.ToRegister(instr->TempAt(0)); XMMRegister tmp_simd = i.TempSimd128Register(1); if (HasImmediateInput(instr, 1)) { // Perform 16-bit shift, then mask away high bits. uint8_t shift = i.InputInt3(1); __ Psrlw(dst, dst, byte{shift}); uint8_t bmask = 0xff >> shift; uint32_t mask = bmask << 24 | bmask << 16 | bmask << 8 | bmask; __ mov(tmp, mask); __ Movd(tmp_simd, tmp); __ Pshufd(tmp_simd, tmp_simd, uint8_t{0}); __ Pand(dst, tmp_simd); } else { // Unpack the bytes into words, do logical shifts, and repack. __ Punpckhbw(kScratchDoubleReg, dst); __ Punpcklbw(dst, dst); __ mov(tmp, i.InputRegister(1)); // Take shift value modulo 8. __ and_(tmp, 7); __ add(tmp, Immediate(8)); __ Movd(tmp_simd, tmp); __ Psrlw(kScratchDoubleReg, kScratchDoubleReg, tmp_simd); __ Psrlw(dst, dst, tmp_simd); __ Packuswb(dst, kScratchDoubleReg); } break; } case kIA32I8x16MinU: { __ Pminub(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I8x16MaxU: { __ Pmaxub(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSEI8x16GtU: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(1); __ pmaxub(dst, src); __ pcmpeqb(dst, src); __ pcmpeqb(kScratchDoubleReg, kScratchDoubleReg); __ xorps(dst, kScratchDoubleReg); break; } case kAVXI8x16GtU: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); XMMRegister src1 = i.InputSimd128Register(0); Operand src2 = i.InputOperand(1); __ vpmaxub(kScratchDoubleReg, src1, src2); __ vpcmpeqb(dst, kScratchDoubleReg, src2); __ vpcmpeqb(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg); __ vpxor(dst, dst, kScratchDoubleReg); break; } case kSSEI8x16GeU: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(1); __ pminub(dst, src); __ pcmpeqb(dst, src); break; } case kAVXI8x16GeU: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister src1 = i.InputSimd128Register(0); Operand src2 = i.InputOperand(1); __ vpminub(kScratchDoubleReg, src1, src2); __ vpcmpeqb(i.OutputSimd128Register(), kScratchDoubleReg, src2); break; } case kIA32I8x16RoundingAverageU: { __ Pavgb(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32I8x16Abs: { __ Pabsb(i.OutputSimd128Register(), i.InputSimd128Register(0)); break; } case kIA32I8x16BitMask: { __ Pmovmskb(i.OutputRegister(), i.InputSimd128Register(0)); break; } case kIA32I8x16Popcnt: { __ I8x16Popcnt(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg, i.TempSimd128Register(0), i.TempRegister(1)); break; } case kIA32S128Const: { XMMRegister dst = i.OutputSimd128Register(); Register tmp = i.TempRegister(0); uint64_t low_qword = make_uint64(i.InputUint32(1), i.InputUint32(0)); __ Move(dst, low_qword); __ Move(tmp, Immediate(i.InputUint32(2))); __ Pinsrd(dst, tmp, 2); __ Move(tmp, Immediate(i.InputUint32(3))); __ Pinsrd(dst, tmp, 3); break; } case kIA32S128Zero: { XMMRegister dst = i.OutputSimd128Register(); __ Pxor(dst, dst); break; } case kIA32S128AllOnes: { XMMRegister dst = i.OutputSimd128Register(); __ Pcmpeqd(dst, dst); break; } case kIA32S128Not: { __ S128Not(i.OutputSimd128Register(), i.InputSimd128Register(0), kScratchDoubleReg); break; } case kSSES128And: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ andps(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXS128And: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpand(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSES128Or: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ orps(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXS128Or: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpor(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kSSES128Xor: { DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); __ xorps(i.OutputSimd128Register(), i.InputOperand(1)); break; } case kAVXS128Xor: { CpuFeatureScope avx_scope(tasm(), AVX); __ vpxor(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputOperand(1)); break; } case kIA32S128Select: { __ S128Select(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), i.InputSimd128Register(2), kScratchDoubleReg); break; } case kIA32S128AndNot: { // The inputs have been inverted by instruction selector, so we can call // andnps here without any modifications. __ Andnps(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1)); break; } case kIA32I8x16Swizzle: { __ I8x16Swizzle(i.OutputSimd128Register(), i.InputSimd128Register(0), i.InputSimd128Register(1), kScratchDoubleReg, i.TempRegister(0), MiscField::decode(instr->opcode())); break; } case kIA32I8x16Shuffle: { XMMRegister dst = i.OutputSimd128Register(); Operand src0 = i.InputOperand(0); Register tmp = i.TempRegister(0); // Prepare 16 byte aligned buffer for shuffle control mask __ mov(tmp, esp); __ and_(esp, -16); if (instr->InputCount() == 5) { // only one input operand DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0)); for (int j = 4; j > 0; j--) { uint32_t mask = i.InputUint32(j); __ push(Immediate(mask)); } __ Pshufb(dst, Operand(esp, 0)); } else { // two input operands DCHECK_EQ(6, instr->InputCount()); __ Movups(kScratchDoubleReg, src0); for (int j = 5; j > 1; j--) { uint32_t lanes = i.InputUint32(j); uint32_t mask = 0; for (int k = 0; k < 32; k += 8) { uint8_t lane = lanes >> k; mask |= (lane < kSimd128Size ? lane : 0x80) << k; } __ push(Immediate(mask)); } __ Pshufb(kScratchDoubleReg, Operand(esp, 0)); Operand src1 = i.InputOperand(1); if (!src1.is_reg(dst)) __ Movups(dst, src1); for (int j = 5; j > 1; j--) { uint32_t lanes = i.InputUint32(j); uint32_t mask = 0; for (int k = 0; k < 32; k += 8) { uint8_t lane = lanes >> k; mask |= (lane >= kSimd128Size ? (lane & 0xF) : 0x80) << k; } __ push(Immediate(mask)); } __ Pshufb(dst, Operand(esp, 0)); __ por(dst, kScratchDoubleReg); } __ mov(esp, tmp); break; } case kIA32S128Load8Splat: { __ Pinsrb(i.OutputSimd128Register(), i.MemoryOperand(), 0); __ Pxor(kScratchDoubleReg, kScratchDoubleReg); __ Pshufb(i.OutputSimd128Register(), kScratchDoubleReg); break; } case kIA32S128Load16Splat: { __ Pinsrw(i.OutputSimd128Register(), i.MemoryOperand(), 0); __ Pshuflw(i.OutputSimd128Register(), i.OutputSimd128Register(), uint8_t{0}); __ Punpcklqdq(i.OutputSimd128Register(), i.OutputSimd128Register()); break; } case kIA32S128Load32Splat: { __ Vbroadcastss(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kIA32S128Load64Splat: { __ Movddup(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kIA32S128Load8x8S: { __ Pmovsxbw(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kIA32S128Load8x8U: { __ Pmovzxbw(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kIA32S128Load16x4S: { __ Pmovsxwd(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kIA32S128Load16x4U: { __ Pmovzxwd(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kIA32S128Load32x2S: { __ Pmovsxdq(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kIA32S128Load32x2U: { __ Pmovzxdq(i.OutputSimd128Register(), i.MemoryOperand()); break; } case kIA32S32x4Rotate: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); uint8_t mask = i.InputUint8(1); if (dst == src) { // 1-byte shorter encoding than pshufd. __ Shufps(dst, src, src, mask); } else { __ Pshufd(dst, src, mask); } break; } case kIA32S32x4Swizzle: { DCHECK_EQ(2, instr->InputCount()); __ Pshufd(i.OutputSimd128Register(), i.InputOperand(0), i.InputUint8(1)); break; } case kIA32S32x4Shuffle: { DCHECK_EQ(4, instr->InputCount()); // Swizzles should be handled above. uint8_t shuffle = i.InputUint8(2); DCHECK_NE(0xe4, shuffle); // A simple blend should be handled below. __ Pshufd(kScratchDoubleReg, i.InputOperand(1), shuffle); __ Pshufd(i.OutputSimd128Register(), i.InputOperand(0), shuffle); __ Pblendw(i.OutputSimd128Register(), kScratchDoubleReg, i.InputUint8(3)); break; } case kIA32S16x8Blend: ASSEMBLE_SIMD_IMM_SHUFFLE(pblendw, SSE4_1, i.InputInt8(2)); break; case kIA32S16x8HalfShuffle1: { XMMRegister dst = i.OutputSimd128Register(); __ Pshuflw(dst, i.InputOperand(0), i.InputUint8(1)); __ Pshufhw(dst, dst, i.InputUint8(2)); break; } case kIA32S16x8HalfShuffle2: { XMMRegister dst = i.OutputSimd128Register(); __ Pshuflw(kScratchDoubleReg, i.InputOperand(1), i.InputUint8(2)); __ Pshufhw(kScratchDoubleReg, kScratchDoubleReg, i.InputUint8(3)); __ Pshuflw(dst, i.InputOperand(0), i.InputUint8(2)); __ Pshufhw(dst, dst, i.InputUint8(3)); __ Pblendw(dst, kScratchDoubleReg, i.InputUint8(4)); break; } case kIA32S8x16Alignr: ASSEMBLE_SIMD_IMM_SHUFFLE(palignr, SSSE3, i.InputInt8(2)); break; case kIA32S16x8Dup: { XMMRegister dst = i.OutputSimd128Register(); Operand src = i.InputOperand(0); uint8_t lane = i.InputUint8(1) & 0x7; uint8_t lane4 = lane & 0x3; uint8_t half_dup = lane4 | (lane4 << 2) | (lane4 << 4) | (lane4 << 6); if (lane < 4) { __ Pshuflw(dst, src, half_dup); __ Pshufd(dst, dst, uint8_t{0}); } else { __ Pshufhw(dst, src, half_dup); __ Pshufd(dst, dst, uint8_t{0xaa}); } break; } case kIA32S8x16Dup: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = i.InputSimd128Register(0); uint8_t lane = i.InputUint8(1) & 0xf; if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope avx_scope(tasm(), AVX); if (lane < 8) { __ vpunpcklbw(dst, src, src); } else { __ vpunpckhbw(dst, src, src); } } else { DCHECK_EQ(dst, src); if (lane < 8) { __ punpcklbw(dst, dst); } else { __ punpckhbw(dst, dst); } } lane &= 0x7; uint8_t lane4 = lane & 0x3; uint8_t half_dup = lane4 | (lane4 << 2) | (lane4 << 4) | (lane4 << 6); if (lane < 4) { __ Pshuflw(dst, dst, half_dup); __ Pshufd(dst, dst, uint8_t{0}); } else { __ Pshufhw(dst, dst, half_dup); __ Pshufd(dst, dst, uint8_t{0xaa}); } break; } case kIA32S64x2UnpackHigh: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpckhqdq); break; case kIA32S32x4UnpackHigh: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpckhdq); break; case kIA32S16x8UnpackHigh: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpckhwd); break; case kIA32S8x16UnpackHigh: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpckhbw); break; case kIA32S64x2UnpackLow: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpcklqdq); break; case kIA32S32x4UnpackLow: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpckldq); break; case kIA32S16x8UnpackLow: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpcklwd); break; case kIA32S8x16UnpackLow: ASSEMBLE_SIMD_PUNPCK_SHUFFLE(punpcklbw); break; case kSSES16x8UnzipHigh: { CpuFeatureScope sse_scope(tasm(), SSE4_1); XMMRegister dst = i.OutputSimd128Register(); XMMRegister src2 = dst; DCHECK_EQ(dst, i.InputSimd128Register(0)); if (instr->InputCount() == 2) { __ movups(kScratchDoubleReg, i.InputOperand(1)); __ psrld(kScratchDoubleReg, 16); src2 = kScratchDoubleReg; } __ psrld(dst, 16); __ packusdw(dst, src2); break; } case kAVXS16x8UnzipHigh: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); XMMRegister src2 = dst; if (instr->InputCount() == 2) { __ vpsrld(kScratchDoubleReg, i.InputSimd128Register(1), 16); src2 = kScratchDoubleReg; } __ vpsrld(dst, i.InputSimd128Register(0), 16); __ vpackusdw(dst, dst, src2); break; } case kSSES16x8UnzipLow: { CpuFeatureScope sse_scope(tasm(), SSE4_1); XMMRegister dst = i.OutputSimd128Register(); XMMRegister src2 = dst; DCHECK_EQ(dst, i.InputSimd128Register(0)); __ xorps(kScratchDoubleReg, kScratchDoubleReg); if (instr->InputCount() == 2) { __ pblendw(kScratchDoubleReg, i.InputOperand(1), 0x55); src2 = kScratchDoubleReg; } __ pblendw(dst, kScratchDoubleReg, 0xaa); __ packusdw(dst, src2); break; } case kAVXS16x8UnzipLow: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); XMMRegister src2 = dst; __ vpxor(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg); if (instr->InputCount() == 2) { __ vpblendw(kScratchDoubleReg, kScratchDoubleReg, i.InputOperand(1), 0x55); src2 = kScratchDoubleReg; } __ vpblendw(dst, kScratchDoubleReg, i.InputSimd128Register(0), 0x55); __ vpackusdw(dst, dst, src2); break; } case kSSES8x16UnzipHigh: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src2 = dst; DCHECK_EQ(dst, i.InputSimd128Register(0)); if (instr->InputCount() == 2) { __ movups(kScratchDoubleReg, i.InputOperand(1)); __ psrlw(kScratchDoubleReg, 8); src2 = kScratchDoubleReg; } __ psrlw(dst, 8); __ packuswb(dst, src2); break; } case kAVXS8x16UnzipHigh: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); XMMRegister src2 = dst; if (instr->InputCount() == 2) { __ vpsrlw(kScratchDoubleReg, i.InputSimd128Register(1), 8); src2 = kScratchDoubleReg; } __ vpsrlw(dst, i.InputSimd128Register(0), 8); __ vpackuswb(dst, dst, src2); break; } case kSSES8x16UnzipLow: { XMMRegister dst = i.OutputSimd128Register(); XMMRegister src2 = dst; DCHECK_EQ(dst, i.InputSimd128Register(0)); if (instr->InputCount() == 2) { __ movups(kScratchDoubleReg, i.InputOperand(1)); __ psllw(kScratchDoubleReg, 8); __ psrlw(kScratchDoubleReg, 8); src2 = kScratchDoubleReg; } __ psllw(dst, 8); __ psrlw(dst, 8); __ packuswb(dst, src2); break; } case kAVXS8x16UnzipLow: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); XMMRegister src2 = dst; if (instr->InputCount() == 2) { __ vpsllw(kScratchDoubleReg, i.InputSimd128Register(1), 8); __ vpsrlw(kScratchDoubleReg, kScratchDoubleReg, 8); src2 = kScratchDoubleReg; } __ vpsllw(dst, i.InputSimd128Register(0), 8); __ vpsrlw(dst, dst, 8); __ vpackuswb(dst, dst, src2); break; } case kSSES8x16TransposeLow: { XMMRegister dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); __ psllw(dst, 8); if (instr->InputCount() == 1) { __ movups(kScratchDoubleReg, dst); } else { DCHECK_EQ(2, instr->InputCount()); __ movups(kScratchDoubleReg, i.InputOperand(1)); __ psllw(kScratchDoubleReg, 8); } __ psrlw(dst, 8); __ orps(dst, kScratchDoubleReg); break; } case kAVXS8x16TransposeLow: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); if (instr->InputCount() == 1) { __ vpsllw(kScratchDoubleReg, i.InputSimd128Register(0), 8); __ vpsrlw(dst, kScratchDoubleReg, 8); } else { DCHECK_EQ(2, instr->InputCount()); __ vpsllw(kScratchDoubleReg, i.InputSimd128Register(1), 8); __ vpsllw(dst, i.InputSimd128Register(0), 8); __ vpsrlw(dst, dst, 8); } __ vpor(dst, dst, kScratchDoubleReg); break; } case kSSES8x16TransposeHigh: { XMMRegister dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); __ psrlw(dst, 8); if (instr->InputCount() == 1) { __ movups(kScratchDoubleReg, dst); } else { DCHECK_EQ(2, instr->InputCount()); __ movups(kScratchDoubleReg, i.InputOperand(1)); __ psrlw(kScratchDoubleReg, 8); } __ psllw(kScratchDoubleReg, 8); __ orps(dst, kScratchDoubleReg); break; } case kAVXS8x16TransposeHigh: { CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); if (instr->InputCount() == 1) { __ vpsrlw(dst, i.InputSimd128Register(0), 8); __ vpsllw(kScratchDoubleReg, dst, 8); } else { DCHECK_EQ(2, instr->InputCount()); __ vpsrlw(kScratchDoubleReg, i.InputSimd128Register(1), 8); __ vpsrlw(dst, i.InputSimd128Register(0), 8); __ vpsllw(kScratchDoubleReg, kScratchDoubleReg, 8); } __ vpor(dst, dst, kScratchDoubleReg); break; } case kSSES8x8Reverse: case kSSES8x4Reverse: case kSSES8x2Reverse: { DCHECK_EQ(1, instr->InputCount()); XMMRegister dst = i.OutputSimd128Register(); DCHECK_EQ(dst, i.InputSimd128Register(0)); if (arch_opcode != kSSES8x2Reverse) { // First shuffle words into position. int8_t shuffle_mask = arch_opcode == kSSES8x4Reverse ? 0xB1 : 0x1B; __ pshuflw(dst, dst, shuffle_mask); __ pshufhw(dst, dst, shuffle_mask); } __ movaps(kScratchDoubleReg, dst); __ psrlw(kScratchDoubleReg, 8); __ psllw(dst, 8); __ orps(dst, kScratchDoubleReg); break; } case kAVXS8x2Reverse: case kAVXS8x4Reverse: case kAVXS8x8Reverse: { DCHECK_EQ(1, instr->InputCount()); CpuFeatureScope avx_scope(tasm(), AVX); XMMRegister dst = i.OutputSimd128Register(); XMMRegister src = dst; if (arch_opcode != kAVXS8x2Reverse) { // First shuffle words into position. int8_t shuffle_mask = arch_opcode == kAVXS8x4Reverse ? 0xB1 : 0x1B; __ vpshuflw(dst, i.InputOperand(0), shuffle_mask); __ vpshufhw(dst, dst, shuffle_mask); } else { src = i.InputSimd128Register(0); } // Reverse each 16 bit lane. __ vpsrlw(kScratchDoubleReg, src, 8); __ vpsllw(dst, src, 8); __ vpor(dst, dst, kScratchDoubleReg); break; } case kIA32S128AnyTrue: { Register dst = i.OutputRegister(); XMMRegister src = i.InputSimd128Register(0); Register tmp = i.TempRegister(0); __ xor_(tmp, tmp); __ mov(dst, Immediate(1)); __ Ptest(src, src); __ cmov(zero, dst, tmp); break; } // Need to split up all the different lane structures because the // comparison instruction used matters, e.g. given 0xff00, pcmpeqb returns // 0x0011, pcmpeqw returns 0x0000, ptest will set ZF to 0 and 1 // respectively. case kIA32I64x2AllTrue: ASSEMBLE_SIMD_ALL_TRUE(Pcmpeqq); break; case kIA32I32x4AllTrue: ASSEMBLE_SIMD_ALL_TRUE(Pcmpeqd); break; case kIA32I16x8AllTrue: ASSEMBLE_SIMD_ALL_TRUE(pcmpeqw); break; case kIA32I8x16AllTrue: { ASSEMBLE_SIMD_ALL_TRUE(pcmpeqb); break; } case kIA32Word32AtomicPairLoad: { XMMRegister tmp = i.ToDoubleRegister(instr->TempAt(0)); __ movq(tmp, i.MemoryOperand()); __ Pextrd(i.OutputRegister(0), tmp, 0); __ Pextrd(i.OutputRegister(1), tmp, 1); break; } case kIA32Word32AtomicPairStore: { Label store; __ bind(&store); __ mov(i.TempRegister(0), i.MemoryOperand(2)); __ mov(i.TempRegister(1), i.NextMemoryOperand(2)); __ push(ebx); frame_access_state()->IncreaseSPDelta(1); i.MoveInstructionOperandToRegister(ebx, instr->InputAt(0)); __ lock(); __ cmpxchg8b(i.MemoryOperand(2)); __ pop(ebx); frame_access_state()->IncreaseSPDelta(-1); __ j(not_equal, &store); break; } case kWord32AtomicExchangeInt8: { __ xchg_b(i.InputRegister(0), i.MemoryOperand(1)); __ movsx_b(i.InputRegister(0), i.InputRegister(0)); break; } case kWord32AtomicExchangeUint8: { __ xchg_b(i.InputRegister(0), i.MemoryOperand(1)); __ movzx_b(i.InputRegister(0), i.InputRegister(0)); break; } case kWord32AtomicExchangeInt16: { __ xchg_w(i.InputRegister(0), i.MemoryOperand(1)); __ movsx_w(i.InputRegister(0), i.InputRegister(0)); break; } case kWord32AtomicExchangeUint16: { __ xchg_w(i.InputRegister(0), i.MemoryOperand(1)); __ movzx_w(i.InputRegister(0), i.InputRegister(0)); break; } case kWord32AtomicExchangeWord32: { __ xchg(i.InputRegister(0), i.MemoryOperand(1)); break; } case kIA32Word32AtomicPairExchange: { DCHECK(VerifyOutputOfAtomicPairInstr(&i, instr)); Label exchange; __ bind(&exchange); __ mov(eax, i.MemoryOperand(2)); __ mov(edx, i.NextMemoryOperand(2)); __ push(ebx); frame_access_state()->IncreaseSPDelta(1); i.MoveInstructionOperandToRegister(ebx, instr->InputAt(0)); __ lock(); __ cmpxchg8b(i.MemoryOperand(2)); __ pop(ebx); frame_access_state()->IncreaseSPDelta(-1); __ j(not_equal, &exchange); break; } case kWord32AtomicCompareExchangeInt8: { __ lock(); __ cmpxchg_b(i.MemoryOperand(2), i.InputRegister(1)); __ movsx_b(eax, eax); break; } case kWord32AtomicCompareExchangeUint8: { __ lock(); __ cmpxchg_b(i.MemoryOperand(2), i.InputRegister(1)); __ movzx_b(eax, eax); break; } case kWord32AtomicCompareExchangeInt16: { __ lock(); __ cmpxchg_w(i.MemoryOperand(2), i.InputRegister(1)); __ movsx_w(eax, eax); break; } case kWord32AtomicCompareExchangeUint16: { __ lock(); __ cmpxchg_w(i.MemoryOperand(2), i.InputRegister(1)); __ movzx_w(eax, eax); break; } case kWord32AtomicCompareExchangeWord32: { __ lock(); __ cmpxchg(i.MemoryOperand(2), i.InputRegister(1)); break; } case kIA32Word32AtomicPairCompareExchange: { __ push(ebx); frame_access_state()->IncreaseSPDelta(1); i.MoveInstructionOperandToRegister(ebx, instr->InputAt(2)); __ lock(); __ cmpxchg8b(i.MemoryOperand(4)); __ pop(ebx); frame_access_state()->IncreaseSPDelta(-1); break; } #define ATOMIC_BINOP_CASE(op, inst) \ case kWord32Atomic##op##Int8: { \ ASSEMBLE_ATOMIC_BINOP(inst, mov_b, cmpxchg_b); \ __ movsx_b(eax, eax); \ break; \ } \ case kWord32Atomic##op##Uint8: { \ ASSEMBLE_ATOMIC_BINOP(inst, mov_b, cmpxchg_b); \ __ movzx_b(eax, eax); \ break; \ } \ case kWord32Atomic##op##Int16: { \ ASSEMBLE_ATOMIC_BINOP(inst, mov_w, cmpxchg_w); \ __ movsx_w(eax, eax); \ break; \ } \ case kWord32Atomic##op##Uint16: { \ ASSEMBLE_ATOMIC_BINOP(inst, mov_w, cmpxchg_w); \ __ movzx_w(eax, eax); \ break; \ } \ case kWord32Atomic##op##Word32: { \ ASSEMBLE_ATOMIC_BINOP(inst, mov, cmpxchg); \ break; \ } ATOMIC_BINOP_CASE(Add, add) ATOMIC_BINOP_CASE(Sub, sub) ATOMIC_BINOP_CASE(And, and_) ATOMIC_BINOP_CASE(Or, or_) ATOMIC_BINOP_CASE(Xor, xor_) #undef ATOMIC_BINOP_CASE #define ATOMIC_BINOP_CASE(op, instr1, instr2) \ case kIA32Word32AtomicPair##op: { \ DCHECK(VerifyOutputOfAtomicPairInstr(&i, instr)); \ ASSEMBLE_I64ATOMIC_BINOP(instr1, instr2) \ break; \ } ATOMIC_BINOP_CASE(Add, add, adc) ATOMIC_BINOP_CASE(And, and_, and_) ATOMIC_BINOP_CASE(Or, or_, or_) ATOMIC_BINOP_CASE(Xor, xor_, xor_) #undef ATOMIC_BINOP_CASE case kIA32Word32AtomicPairSub: { DCHECK(VerifyOutputOfAtomicPairInstr(&i, instr)); Label binop; __ bind(&binop); // Move memory operand into edx:eax __ mov(eax, i.MemoryOperand(2)); __ mov(edx, i.NextMemoryOperand(2)); // Save input registers temporarily on the stack. __ push(ebx); frame_access_state()->IncreaseSPDelta(1); i.MoveInstructionOperandToRegister(ebx, instr->InputAt(0)); __ push(i.InputRegister(1)); // Negate input in place __ neg(ebx); __ adc(i.InputRegister(1), 0); __ neg(i.InputRegister(1)); // Add memory operand, negated input. __ add(ebx, eax); __ adc(i.InputRegister(1), edx); __ lock(); __ cmpxchg8b(i.MemoryOperand(2)); // Restore input registers __ pop(i.InputRegister(1)); __ pop(ebx); frame_access_state()->IncreaseSPDelta(-1); __ j(not_equal, &binop); break; } case kWord32AtomicLoadInt8: case kWord32AtomicLoadUint8: case kWord32AtomicLoadInt16: case kWord32AtomicLoadUint16: case kWord32AtomicLoadWord32: case kWord32AtomicStoreWord8: case kWord32AtomicStoreWord16: case kWord32AtomicStoreWord32: UNREACHABLE(); // Won't be generated by instruction selector. break; } return kSuccess; } static Condition FlagsConditionToCondition(FlagsCondition condition) { switch (condition) { case kUnorderedEqual: case kEqual: return equal; break; case kUnorderedNotEqual: case kNotEqual: return not_equal; break; case kSignedLessThan: return less; break; case kSignedGreaterThanOrEqual: return greater_equal; break; case kSignedLessThanOrEqual: return less_equal; break; case kSignedGreaterThan: return greater; break; case kUnsignedLessThan: return below; break; case kUnsignedGreaterThanOrEqual: return above_equal; break; case kUnsignedLessThanOrEqual: return below_equal; break; case kUnsignedGreaterThan: return above; break; case kOverflow: return overflow; break; case kNotOverflow: return no_overflow; break; default: UNREACHABLE(); } } // Assembles a branch after an instruction. void CodeGenerator::AssembleArchBranch(Instruction* instr, BranchInfo* branch) { Label::Distance flabel_distance = branch->fallthru ? Label::kNear : Label::kFar; Label* tlabel = branch->true_label; Label* flabel = branch->false_label; if (branch->condition == kUnorderedEqual) { __ j(parity_even, flabel, flabel_distance); } else if (branch->condition == kUnorderedNotEqual) { __ j(parity_even, tlabel); } __ j(FlagsConditionToCondition(branch->condition), tlabel); // Add a jump if not falling through to the next block. if (!branch->fallthru) __ jmp(flabel); } void CodeGenerator::AssembleArchDeoptBranch(Instruction* instr, BranchInfo* branch) { AssembleArchBranch(instr, branch); } void CodeGenerator::AssembleArchJump(RpoNumber target) { if (!IsNextInAssemblyOrder(target)) __ jmp(GetLabel(target)); } #if V8_ENABLE_WEBASSEMBLY void CodeGenerator::AssembleArchTrap(Instruction* instr, FlagsCondition condition) { class OutOfLineTrap final : public OutOfLineCode { public: OutOfLineTrap(CodeGenerator* gen, Instruction* instr) : OutOfLineCode(gen), instr_(instr), gen_(gen) {} void Generate() final { IA32OperandConverter i(gen_, instr_); TrapId trap_id = static_cast<TrapId>(i.InputInt32(instr_->InputCount() - 1)); GenerateCallToTrap(trap_id); } private: void GenerateCallToTrap(TrapId trap_id) { if (trap_id == TrapId::kInvalid) { // We cannot test calls to the runtime in cctest/test-run-wasm. // Therefore we emit a call to C here instead of a call to the runtime. __ PrepareCallCFunction(0, esi); __ CallCFunction( ExternalReference::wasm_call_trap_callback_for_testing(), 0); __ LeaveFrame(StackFrame::WASM); auto call_descriptor = gen_->linkage()->GetIncomingDescriptor(); size_t pop_size = call_descriptor->ParameterSlotCount() * kSystemPointerSize; // Use ecx as a scratch register, we return anyways immediately. __ Ret(static_cast<int>(pop_size), ecx); } else { gen_->AssembleSourcePosition(instr_); // A direct call to a wasm runtime stub defined in this module. // Just encode the stub index. This will be patched when the code // is added to the native module and copied into wasm code space. __ wasm_call(static_cast<Address>(trap_id), RelocInfo::WASM_STUB_CALL); ReferenceMap* reference_map = gen_->zone()->New<ReferenceMap>(gen_->zone()); gen_->RecordSafepoint(reference_map); __ AssertUnreachable(AbortReason::kUnexpectedReturnFromWasmTrap); } } Instruction* instr_; CodeGenerator* gen_; }; auto ool = zone()->New<OutOfLineTrap>(this, instr); Label* tlabel = ool->entry(); Label end; if (condition == kUnorderedEqual) { __ j(parity_even, &end, Label::kNear); } else if (condition == kUnorderedNotEqual) { __ j(parity_even, tlabel); } __ j(FlagsConditionToCondition(condition), tlabel); __ bind(&end); } #endif // V8_ENABLE_WEBASSEMBLY // Assembles boolean materializations after an instruction. void CodeGenerator::AssembleArchBoolean(Instruction* instr, FlagsCondition condition) { IA32OperandConverter i(this, instr); Label done; // Materialize a full 32-bit 1 or 0 value. The result register is always the // last output of the instruction. Label check; DCHECK_NE(0u, instr->OutputCount()); Register reg = i.OutputRegister(instr->OutputCount() - 1); if (condition == kUnorderedEqual) { __ j(parity_odd, &check, Label::kNear); __ Move(reg, Immediate(0)); __ jmp(&done, Label::kNear); } else if (condition == kUnorderedNotEqual) { __ j(parity_odd, &check, Label::kNear); __ mov(reg, Immediate(1)); __ jmp(&done, Label::kNear); } Condition cc = FlagsConditionToCondition(condition); __ bind(&check); if (reg.is_byte_register()) { // setcc for byte registers (al, bl, cl, dl). __ setcc(cc, reg); __ movzx_b(reg, reg); } else { // Emit a branch to set a register to either 1 or 0. Label set; __ j(cc, &set, Label::kNear); __ Move(reg, Immediate(0)); __ jmp(&done, Label::kNear); __ bind(&set); __ mov(reg, Immediate(1)); } __ bind(&done); } void CodeGenerator::AssembleArchBinarySearchSwitch(Instruction* instr) { IA32OperandConverter i(this, instr); Register input = i.InputRegister(0); std::vector<std::pair<int32_t, Label*>> cases; for (size_t index = 2; index < instr->InputCount(); index += 2) { cases.push_back({i.InputInt32(index + 0), GetLabel(i.InputRpo(index + 1))}); } AssembleArchBinarySearchSwitchRange(input, i.InputRpo(1), cases.data(), cases.data() + cases.size()); } void CodeGenerator::AssembleArchTableSwitch(Instruction* instr) { IA32OperandConverter i(this, instr); Register input = i.InputRegister(0); size_t const case_count = instr->InputCount() - 2; Label** cases = zone()->NewArray<Label*>(case_count); for (size_t index = 0; index < case_count; ++index) { cases[index] = GetLabel(i.InputRpo(index + 2)); } Label* const table = AddJumpTable(cases, case_count); __ cmp(input, Immediate(case_count)); __ j(above_equal, GetLabel(i.InputRpo(1))); __ jmp(Operand::JumpTable(input, times_system_pointer_size, table)); } void CodeGenerator::AssembleArchSelect(Instruction* instr, FlagsCondition condition) { UNIMPLEMENTED(); } // The calling convention for JSFunctions on IA32 passes arguments on the // stack and the JSFunction and context in EDI and ESI, respectively, thus // the steps of the call look as follows: // --{ before the call instruction }-------------------------------------------- // | caller frame | // ^ esp ^ ebp // --{ push arguments and setup ESI, EDI }-------------------------------------- // | args + receiver | caller frame | // ^ esp ^ ebp // [edi = JSFunction, esi = context] // --{ call [edi + kCodeEntryOffset] }------------------------------------------ // | RET | args + receiver | caller frame | // ^ esp ^ ebp // =={ prologue of called function }============================================ // --{ push ebp }--------------------------------------------------------------- // | FP | RET | args + receiver | caller frame | // ^ esp ^ ebp // --{ mov ebp, esp }----------------------------------------------------------- // | FP | RET | args + receiver | caller frame | // ^ ebp,esp // --{ push esi }--------------------------------------------------------------- // | CTX | FP | RET | args + receiver | caller frame | // ^esp ^ ebp // --{ push edi }--------------------------------------------------------------- // | FNC | CTX | FP | RET | args + receiver | caller frame | // ^esp ^ ebp // --{ subi esp, #N }----------------------------------------------------------- // | callee frame | FNC | CTX | FP | RET | args + receiver | caller frame | // ^esp ^ ebp // =={ body of called function }================================================ // =={ epilogue of called function }============================================ // --{ mov esp, ebp }----------------------------------------------------------- // | FP | RET | args + receiver | caller frame | // ^ esp,ebp // --{ pop ebp }----------------------------------------------------------- // | | RET | args + receiver | caller frame | // ^ esp ^ ebp // --{ ret #A+1 }----------------------------------------------------------- // | | caller frame | // ^ esp ^ ebp // Runtime function calls are accomplished by doing a stub call to the // CEntry (a real code object). On IA32 passes arguments on the // stack, the number of arguments in EAX, the address of the runtime function // in EBX, and the context in ESI. // --{ before the call instruction }-------------------------------------------- // | caller frame | // ^ esp ^ ebp // --{ push arguments and setup EAX, EBX, and ESI }----------------------------- // | args + receiver | caller frame | // ^ esp ^ ebp // [eax = #args, ebx = runtime function, esi = context] // --{ call #CEntry }----------------------------------------------------------- // | RET | args + receiver | caller frame | // ^ esp ^ ebp // =={ body of runtime function }=============================================== // --{ runtime returns }-------------------------------------------------------- // | caller frame | // ^ esp ^ ebp // Other custom linkages (e.g. for calling directly into and out of C++) may // need to save callee-saved registers on the stack, which is done in the // function prologue of generated code. // --{ before the call instruction }-------------------------------------------- // | caller frame | // ^ esp ^ ebp // --{ set up arguments in registers on stack }--------------------------------- // | args | caller frame | // ^ esp ^ ebp // [r0 = arg0, r1 = arg1, ...] // --{ call code }-------------------------------------------------------------- // | RET | args | caller frame | // ^ esp ^ ebp // =={ prologue of called function }============================================ // --{ push ebp }--------------------------------------------------------------- // | FP | RET | args | caller frame | // ^ esp ^ ebp // --{ mov ebp, esp }----------------------------------------------------------- // | FP | RET | args | caller frame | // ^ ebp,esp // --{ save registers }--------------------------------------------------------- // | regs | FP | RET | args | caller frame | // ^ esp ^ ebp // --{ subi esp, #N }----------------------------------------------------------- // | callee frame | regs | FP | RET | args | caller frame | // ^esp ^ ebp // =={ body of called function }================================================ // =={ epilogue of called function }============================================ // --{ restore registers }------------------------------------------------------ // | regs | FP | RET | args | caller frame | // ^ esp ^ ebp // --{ mov esp, ebp }----------------------------------------------------------- // | FP | RET | args | caller frame | // ^ esp,ebp // --{ pop ebp }---------------------------------------------------------------- // | RET | args | caller frame | // ^ esp ^ ebp void CodeGenerator::FinishFrame(Frame* frame) { auto call_descriptor = linkage()->GetIncomingDescriptor(); const RegList saves = call_descriptor->CalleeSavedRegisters(); if (saves != 0) { // Save callee-saved registers. DCHECK(!info()->is_osr()); int pushed = 0; for (int i = Register::kNumRegisters - 1; i >= 0; i--) { if (!((1 << i) & saves)) continue; ++pushed; } frame->AllocateSavedCalleeRegisterSlots(pushed); } } void CodeGenerator::AssembleConstructFrame() { auto call_descriptor = linkage()->GetIncomingDescriptor(); if (frame_access_state()->has_frame()) { if (call_descriptor->IsCFunctionCall()) { __ push(ebp); __ mov(ebp, esp); #if V8_ENABLE_WEBASSEMBLY if (info()->GetOutputStackFrameType() == StackFrame::C_WASM_ENTRY) { __ Push(Immediate(StackFrame::TypeToMarker(StackFrame::C_WASM_ENTRY))); // Reserve stack space for saving the c_entry_fp later. __ AllocateStackSpace(kSystemPointerSize); } #endif // V8_ENABLE_WEBASSEMBLY } else if (call_descriptor->IsJSFunctionCall()) { __ Prologue(); } else { __ StubPrologue(info()->GetOutputStackFrameType()); #if V8_ENABLE_WEBASSEMBLY if (call_descriptor->IsWasmFunctionCall()) { __ push(kWasmInstanceRegister); } else if (call_descriptor->IsWasmImportWrapper() || call_descriptor->IsWasmCapiFunction()) { // Wasm import wrappers are passed a tuple in the place of the instance. // Unpack the tuple into the instance and the target callable. // This must be done here in the codegen because it cannot be expressed // properly in the graph. __ mov(kJSFunctionRegister, Operand(kWasmInstanceRegister, Tuple2::kValue2Offset - kHeapObjectTag)); __ mov(kWasmInstanceRegister, Operand(kWasmInstanceRegister, Tuple2::kValue1Offset - kHeapObjectTag)); __ push(kWasmInstanceRegister); if (call_descriptor->IsWasmCapiFunction()) { // Reserve space for saving the PC later. __ AllocateStackSpace(kSystemPointerSize); } } #endif // V8_ENABLE_WEBASSEMBLY } } int required_slots = frame()->GetTotalFrameSlotCount() - frame()->GetFixedSlotCount(); if (info()->is_osr()) { // TurboFan OSR-compiled functions cannot be entered directly. __ Abort(AbortReason::kShouldNotDirectlyEnterOsrFunction); // Unoptimized code jumps directly to this entrypoint while the unoptimized // frame is still on the stack. Optimized code uses OSR values directly from // the unoptimized frame. Thus, all that needs to be done is to allocate the // remaining stack slots. __ RecordComment("-- OSR entrypoint --"); osr_pc_offset_ = __ pc_offset(); required_slots -= osr_helper()->UnoptimizedFrameSlots(); } const RegList saves = call_descriptor->CalleeSavedRegisters(); if (required_slots > 0) { DCHECK(frame_access_state()->has_frame()); #if V8_ENABLE_WEBASSEMBLY if (info()->IsWasm() && required_slots * kSystemPointerSize > 4 * KB) { // For WebAssembly functions with big frames we have to do the stack // overflow check before we construct the frame. Otherwise we may not // have enough space on the stack to call the runtime for the stack // overflow. Label done; // If the frame is bigger than the stack, we throw the stack overflow // exception unconditionally. Thereby we can avoid the integer overflow // check in the condition code. if (required_slots * kSystemPointerSize < FLAG_stack_size * KB) { Register scratch = esi; __ push(scratch); __ mov(scratch, FieldOperand(kWasmInstanceRegister, WasmInstanceObject::kRealStackLimitAddressOffset)); __ mov(scratch, Operand(scratch, 0)); __ add(scratch, Immediate(required_slots * kSystemPointerSize)); __ cmp(esp, scratch); __ pop(scratch); __ j(above_equal, &done, Label::kNear); } __ wasm_call(wasm::WasmCode::kWasmStackOverflow, RelocInfo::WASM_STUB_CALL); // The call does not return, hence we can ignore any references and just // define an empty safepoint. ReferenceMap* reference_map = zone()->New<ReferenceMap>(zone()); RecordSafepoint(reference_map); __ AssertUnreachable(AbortReason::kUnexpectedReturnFromWasmTrap); __ bind(&done); } #endif // V8_ENABLE_WEBASSEMBLY // Skip callee-saved and return slots, which are created below. required_slots -= base::bits::CountPopulation(saves); required_slots -= frame()->GetReturnSlotCount(); if (required_slots > 0) { __ AllocateStackSpace(required_slots * kSystemPointerSize); } } if (saves != 0) { // Save callee-saved registers. DCHECK(!info()->is_osr()); for (int i = Register::kNumRegisters - 1; i >= 0; i--) { if (((1 << i) & saves)) __ push(Register::from_code(i)); } } // Allocate return slots (located after callee-saved). if (frame()->GetReturnSlotCount() > 0) { __ AllocateStackSpace(frame()->GetReturnSlotCount() * kSystemPointerSize); } } void CodeGenerator::AssembleReturn(InstructionOperand* additional_pop_count) { auto call_descriptor = linkage()->GetIncomingDescriptor(); const RegList saves = call_descriptor->CalleeSavedRegisters(); // Restore registers. if (saves != 0) { const int returns = frame()->GetReturnSlotCount(); if (returns != 0) { __ add(esp, Immediate(returns * kSystemPointerSize)); } for (int i = 0; i < Register::kNumRegisters; i++) { if (!((1 << i) & saves)) continue; __ pop(Register::from_code(i)); } } IA32OperandConverter g(this, nullptr); int parameter_slots = static_cast<int>(call_descriptor->ParameterSlotCount()); // {aditional_pop_count} is only greater than zero if {parameter_slots = 0}. // Check RawMachineAssembler::PopAndReturn. if (parameter_slots != 0) { if (additional_pop_count->IsImmediate()) { DCHECK_EQ(g.ToConstant(additional_pop_count).ToInt32(), 0); } else if (FLAG_debug_code) { __ cmp(g.ToRegister(additional_pop_count), Immediate(0)); __ Assert(equal, AbortReason::kUnexpectedAdditionalPopValue); } } Register argc_reg = ecx; // Functions with JS linkage have at least one parameter (the receiver). // If {parameter_slots} == 0, it means it is a builtin with // kDontAdaptArgumentsSentinel, which takes care of JS arguments popping // itself. const bool drop_jsargs = parameter_slots != 0 && frame_access_state()->has_frame() && call_descriptor->IsJSFunctionCall(); if (call_descriptor->IsCFunctionCall()) { AssembleDeconstructFrame(); } else if (frame_access_state()->has_frame()) { // Canonicalize JSFunction return sites for now if they always have the same // number of return args. if (additional_pop_count->IsImmediate() && g.ToConstant(additional_pop_count).ToInt32() == 0) { if (return_label_.is_bound()) { __ jmp(&return_label_); return; } else { __ bind(&return_label_); } } if (drop_jsargs) { // Get the actual argument count. __ mov(argc_reg, Operand(ebp, StandardFrameConstants::kArgCOffset)); DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters() & argc_reg.bit()); } AssembleDeconstructFrame(); } if (drop_jsargs) { // We must pop all arguments from the stack (including the receiver). // The number of arguments without the receiver is // max(argc_reg, parameter_slots-1), and the receiver is added in // DropArguments(). int parameter_slots_without_receiver = parameter_slots - 1; Label mismatch_return; Register scratch_reg = edx; DCHECK_NE(argc_reg, scratch_reg); DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters() & argc_reg.bit()); DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters() & scratch_reg.bit()); __ cmp(argc_reg, Immediate(parameter_slots_without_receiver)); __ j(greater, &mismatch_return, Label::kNear); __ Ret(parameter_slots * kSystemPointerSize, scratch_reg); __ bind(&mismatch_return); __ DropArguments(argc_reg, scratch_reg, TurboAssembler::kCountIsInteger, TurboAssembler::kCountExcludesReceiver); // We use a return instead of a jump for better return address prediction. __ Ret(); } else if (additional_pop_count->IsImmediate()) { int additional_count = g.ToConstant(additional_pop_count).ToInt32(); size_t pop_size = (parameter_slots + additional_count) * kSystemPointerSize; if (is_uint16(pop_size)) { // Avoid the additional scratch register, it might clobber the // CalleeSavedRegisters. __ ret(static_cast<int>(pop_size)); } else { Register scratch_reg = ecx; DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters() & scratch_reg.bit()); CHECK_LE(pop_size, static_cast<size_t>(std::numeric_limits<int>::max())); __ Ret(static_cast<int>(pop_size), scratch_reg); } } else { Register pop_reg = g.ToRegister(additional_pop_count); Register scratch_reg = pop_reg == ecx ? edx : ecx; DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters() & scratch_reg.bit()); DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters() & pop_reg.bit()); int pop_size = static_cast<int>(parameter_slots * kSystemPointerSize); __ PopReturnAddressTo(scratch_reg); __ lea(esp, Operand(esp, pop_reg, times_system_pointer_size, static_cast<int>(pop_size))); __ PushReturnAddressFrom(scratch_reg); __ Ret(); } } void CodeGenerator::FinishCode() {} void CodeGenerator::PrepareForDeoptimizationExits( ZoneDeque<DeoptimizationExit*>* exits) {} void CodeGenerator::AssembleMove(InstructionOperand* source, InstructionOperand* destination) { IA32OperandConverter g(this, nullptr); // Dispatch on the source and destination operand kinds. switch (MoveType::InferMove(source, destination)) { case MoveType::kRegisterToRegister: if (source->IsRegister()) { __ mov(g.ToRegister(destination), g.ToRegister(source)); } else { DCHECK(source->IsFPRegister()); __ Movaps(g.ToDoubleRegister(destination), g.ToDoubleRegister(source)); } return; case MoveType::kRegisterToStack: { Operand dst = g.ToOperand(destination); if (source->IsRegister()) { __ mov(dst, g.ToRegister(source)); } else { DCHECK(source->IsFPRegister()); XMMRegister src = g.ToDoubleRegister(source); MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep == MachineRepresentation::kFloat32) { __ Movss(dst, src); } else if (rep == MachineRepresentation::kFloat64) { __ Movsd(dst, src); } else { DCHECK_EQ(MachineRepresentation::kSimd128, rep); __ Movups(dst, src); } } return; } case MoveType::kStackToRegister: { Operand src = g.ToOperand(source); if (source->IsStackSlot()) { __ mov(g.ToRegister(destination), src); } else { DCHECK(source->IsFPStackSlot()); XMMRegister dst = g.ToDoubleRegister(destination); MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep == MachineRepresentation::kFloat32) { __ Movss(dst, src); } else if (rep == MachineRepresentation::kFloat64) { __ Movsd(dst, src); } else { DCHECK_EQ(MachineRepresentation::kSimd128, rep); __ Movups(dst, src); } } return; } case MoveType::kStackToStack: { Operand src = g.ToOperand(source); Operand dst = g.ToOperand(destination); if (source->IsStackSlot()) { __ push(src); __ pop(dst); } else { MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep == MachineRepresentation::kFloat32) { __ Movss(kScratchDoubleReg, src); __ Movss(dst, kScratchDoubleReg); } else if (rep == MachineRepresentation::kFloat64) { __ Movsd(kScratchDoubleReg, src); __ Movsd(dst, kScratchDoubleReg); } else { DCHECK_EQ(MachineRepresentation::kSimd128, rep); __ Movups(kScratchDoubleReg, src); __ Movups(dst, kScratchDoubleReg); } } return; } case MoveType::kConstantToRegister: { Constant src = g.ToConstant(source); if (destination->IsRegister()) { Register dst = g.ToRegister(destination); if (src.type() == Constant::kHeapObject) { __ Move(dst, src.ToHeapObject()); } else { __ Move(dst, g.ToImmediate(source)); } } else { DCHECK(destination->IsFPRegister()); XMMRegister dst = g.ToDoubleRegister(destination); if (src.type() == Constant::kFloat32) { // TODO(turbofan): Can we do better here? __ Move(dst, src.ToFloat32AsInt()); } else { DCHECK_EQ(src.type(), Constant::kFloat64); __ Move(dst, src.ToFloat64().AsUint64()); } } return; } case MoveType::kConstantToStack: { Constant src = g.ToConstant(source); Operand dst = g.ToOperand(destination); if (destination->IsStackSlot()) { __ Move(dst, g.ToImmediate(source)); } else { DCHECK(destination->IsFPStackSlot()); if (src.type() == Constant::kFloat32) { __ Move(dst, Immediate(src.ToFloat32AsInt())); } else { DCHECK_EQ(src.type(), Constant::kFloat64); uint64_t constant_value = src.ToFloat64().AsUint64(); uint32_t lower = static_cast<uint32_t>(constant_value); uint32_t upper = static_cast<uint32_t>(constant_value >> 32); Operand dst0 = dst; Operand dst1 = g.ToOperand(destination, kSystemPointerSize); __ Move(dst0, Immediate(lower)); __ Move(dst1, Immediate(upper)); } } return; } } UNREACHABLE(); } void CodeGenerator::AssembleSwap(InstructionOperand* source, InstructionOperand* destination) { IA32OperandConverter g(this, nullptr); // Dispatch on the source and destination operand kinds. Not all // combinations are possible. switch (MoveType::InferSwap(source, destination)) { case MoveType::kRegisterToRegister: { if (source->IsRegister()) { Register src = g.ToRegister(source); Register dst = g.ToRegister(destination); __ push(src); __ mov(src, dst); __ pop(dst); } else { DCHECK(source->IsFPRegister()); XMMRegister src = g.ToDoubleRegister(source); XMMRegister dst = g.ToDoubleRegister(destination); __ Movaps(kScratchDoubleReg, src); __ Movaps(src, dst); __ Movaps(dst, kScratchDoubleReg); } return; } case MoveType::kRegisterToStack: { if (source->IsRegister()) { Register src = g.ToRegister(source); __ push(src); frame_access_state()->IncreaseSPDelta(1); Operand dst = g.ToOperand(destination); __ mov(src, dst); frame_access_state()->IncreaseSPDelta(-1); dst = g.ToOperand(destination); __ pop(dst); } else { DCHECK(source->IsFPRegister()); XMMRegister src = g.ToDoubleRegister(source); Operand dst = g.ToOperand(destination); MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep == MachineRepresentation::kFloat32) { __ Movss(kScratchDoubleReg, dst); __ Movss(dst, src); __ Movaps(src, kScratchDoubleReg); } else if (rep == MachineRepresentation::kFloat64) { __ Movsd(kScratchDoubleReg, dst); __ Movsd(dst, src); __ Movaps(src, kScratchDoubleReg); } else { DCHECK_EQ(MachineRepresentation::kSimd128, rep); __ Movups(kScratchDoubleReg, dst); __ Movups(dst, src); __ Movups(src, kScratchDoubleReg); } } return; } case MoveType::kStackToStack: { if (source->IsStackSlot()) { Operand dst1 = g.ToOperand(destination); __ push(dst1); frame_access_state()->IncreaseSPDelta(1); Operand src1 = g.ToOperand(source); __ push(src1); Operand dst2 = g.ToOperand(destination); __ pop(dst2); frame_access_state()->IncreaseSPDelta(-1); Operand src2 = g.ToOperand(source); __ pop(src2); } else { DCHECK(source->IsFPStackSlot()); Operand src0 = g.ToOperand(source); Operand dst0 = g.ToOperand(destination); MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep == MachineRepresentation::kFloat32) { __ Movss(kScratchDoubleReg, dst0); // Save dst in scratch register. __ push(src0); // Then use stack to copy src to destination. __ pop(dst0); __ Movss(src0, kScratchDoubleReg); } else if (rep == MachineRepresentation::kFloat64) { __ Movsd(kScratchDoubleReg, dst0); // Save dst in scratch register. __ push(src0); // Then use stack to copy src to destination. __ pop(dst0); __ push(g.ToOperand(source, kSystemPointerSize)); __ pop(g.ToOperand(destination, kSystemPointerSize)); __ Movsd(src0, kScratchDoubleReg); } else { DCHECK_EQ(MachineRepresentation::kSimd128, rep); __ Movups(kScratchDoubleReg, dst0); // Save dst in scratch register. __ push(src0); // Then use stack to copy src to destination. __ pop(dst0); __ push(g.ToOperand(source, kSystemPointerSize)); __ pop(g.ToOperand(destination, kSystemPointerSize)); __ push(g.ToOperand(source, 2 * kSystemPointerSize)); __ pop(g.ToOperand(destination, 2 * kSystemPointerSize)); __ push(g.ToOperand(source, 3 * kSystemPointerSize)); __ pop(g.ToOperand(destination, 3 * kSystemPointerSize)); __ Movups(src0, kScratchDoubleReg); } } return; } default: UNREACHABLE(); } } void CodeGenerator::AssembleJumpTable(Label** targets, size_t target_count) { for (size_t index = 0; index < target_count; ++index) { __ dd(targets[index]); } } #undef __ #undef kScratchDoubleReg #undef ASSEMBLE_COMPARE #undef ASSEMBLE_IEEE754_BINOP #undef ASSEMBLE_IEEE754_UNOP #undef ASSEMBLE_BINOP #undef ASSEMBLE_ATOMIC_BINOP #undef ASSEMBLE_I64ATOMIC_BINOP #undef ASSEMBLE_MOVX #undef ASSEMBLE_SIMD_PUNPCK_SHUFFLE #undef ASSEMBLE_SIMD_IMM_SHUFFLE #undef ASSEMBLE_SIMD_ALL_TRUE #undef ASSEMBLE_SIMD_SHIFT #undef ASSEMBLE_SIMD_PINSR } // namespace compiler } // namespace internal } // namespace v8