%PDF- <> %âãÏÓ endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 28 0 R 29 0 R] /MediaBox[ 0 0 595.5 842.25] /Contents 4 0 R/Group<>/Tabs/S>> endobj ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµùÕ5sLOšuY>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<>endobj 2 0 obj<> endobj 2 0 obj<>endobj 2 0 obj<>es 3 0 R>> endobj 2 0 obj<> ox[ 0.000000 0.000000 609.600000 935.600000]/Fi endobj 3 0 obj<> endobj 7 1 obj<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI]>>/Subtype/Form>> stream
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ARCH_POWERPC_EXTABLE_H #define _ARCH_POWERPC_EXTABLE_H /* * The exception table consists of pairs of relative addresses: the first is * the address of an instruction that is allowed to fault, and the second is * the address at which the program should continue. No registers are * modified, so it is entirely up to the continuation code to figure out what * to do. * * All the routines below use bits of fixup code that are out of line with the * main instruction path. This means when everything is well, we don't even * have to jump over them. Further, they do not intrude on our cache or tlb * entries. */ #define ARCH_HAS_RELATIVE_EXTABLE struct exception_table_entry { int insn; int fixup; }; static inline unsigned long extable_fixup(const struct exception_table_entry *x) { return (unsigned long)&x->fixup + x->fixup; } #endif